|
|
|
|
|
from __future__ import annotations |
|
|
|
import os |
|
|
|
import gradio as gr |
|
import torch |
|
|
|
from app_inference import create_inference_demo |
|
from app_training import create_training_demo |
|
from app_upload import create_upload_demo |
|
from inference import InferencePipeline |
|
from trainer import Trainer |
|
|
|
TITLE = """# SVDiff-pytorch Training UI |
|
This demo is based on https://github.com/mkshing/svdiff-pytorch, which is an implementation of "SVDiff: Compact Parameter Space for Diffusion Fine-Tuning" by [mkshing](https://twitter.com/mk1stats) |
|
""" |
|
|
|
ORIGINAL_SPACE_ID = 'mshing/SVDiff-pytorch-UI' |
|
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID) |
|
SHARED_UI_WARNING = f'''# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU. |
|
|
|
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co./spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center> |
|
''' |
|
|
|
if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID: |
|
SETTINGS = f'<a href="https://huggingface.co./spaces/{SPACE_ID}/settings">Settings</a>' |
|
else: |
|
SETTINGS = 'Settings' |
|
CUDA_NOT_AVAILABLE_WARNING = f'''# Attention - Running on CPU. |
|
<center> |
|
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces. |
|
"T4 small" is sufficient to run this demo. |
|
</center> |
|
''' |
|
|
|
HF_TOKEN_NOT_SPECIFIED_WARNING = f'''# Attention - The environment variable `HF_TOKEN` is not specified. Please specify your Hugging Face token with write permission as the value of it. |
|
<center> |
|
You can check and create your Hugging Face tokens <a href="https://huggingface.co./settings/tokens" target="_blank">here</a>. |
|
You can specify environment variables in the "Repository secrets" section of the {SETTINGS} tab. |
|
</center> |
|
''' |
|
|
|
HF_TOKEN = os.getenv('HF_TOKEN') |
|
|
|
|
|
def show_warning(warning_text: str) -> gr.Blocks: |
|
with gr.Blocks() as demo: |
|
with gr.Box(): |
|
gr.Markdown(warning_text) |
|
return demo |
|
|
|
|
|
pipe = InferencePipeline(HF_TOKEN) |
|
trainer = Trainer(HF_TOKEN) |
|
|
|
with gr.Blocks(css='style.css') as demo: |
|
if os.getenv('IS_SHARED_UI'): |
|
show_warning(SHARED_UI_WARNING) |
|
if not torch.cuda.is_available(): |
|
show_warning(CUDA_NOT_AVAILABLE_WARNING) |
|
if not HF_TOKEN: |
|
show_warning(HF_TOKEN_NOT_SPECIFIED_WARNING) |
|
|
|
gr.Markdown(TITLE) |
|
with gr.Tabs(): |
|
with gr.TabItem('Train'): |
|
create_training_demo(trainer, pipe) |
|
with gr.TabItem('Test'): |
|
create_inference_demo(pipe, HF_TOKEN) |
|
with gr.TabItem('Upload'): |
|
gr.Markdown(''' |
|
- You can use this tab to upload models later if you choose not to upload models in training time or if upload in training time failed. |
|
''') |
|
create_upload_demo(HF_TOKEN) |
|
|
|
demo.queue(max_size=1).launch(share=False) |
|
|