import time import autokeras as ak import tensorflow as tf import numpy as np neutral = np.load ("./neutral/img_emb/img_emb_0.npy") print(neutral.shape) porn = np.load ("./porn/img_emb/img_emb_0.npy") print(porn.shape) drawings = np.load ("./drawings/img_emb/img_emb_0.npy") print(drawings.shape) hentai = np.load ("./hentai/img_emb/img_emb_0.npy") print(hentai.shape) sexy = np.load ("./sexy/img_emb/img_emb_0.npy") print(sexy.shape) x_t =np.concatenate((porn,sexy),axis = 0) x_t =np.concatenate((x_t,hentai),axis = 0) nsfw_t_len=x_t.shape[0] print(nsfw_t_len) x_t =np.concatenate((x_t,neutral),axis = 0) x_t =np.concatenate((x_t,drawings),axis = 0) y_t = np.zeros(x_t.shape[0], dtype = np.uint8) sfw_t_len=x_t.shape[0] - nsfw_t_len print(sfw_t_len) for i in range(nsfw_t_len): y_t[i]=1 from sklearn.utils import shuffle x_train, y_train = shuffle(x_t, y_t) print(y_t) print(y_train) x_train = x_train.astype(float) #[100:-100] y_train = y_train.astype(int)#[100:-100] #x_test = x_test.astype(float) #[100:-100] #y_test = y_test.astype(int)#[100:-100] # It tries 10 different models. clf = ak.StructuredDataClassifier(overwrite=True, max_trials=5) # Feed the structured data classifier with training data. clf.fit(x_train, y_train, epochs=10, validation_split=0.1) model = clf.export_model() model.summary() model.save("clip_autokeras_nsfw")