Spaces:
Sleeping
Sleeping
Upload 21 files
Browse files- vocoder/bigvgan/__init__.py +0 -0
- vocoder/bigvgan/__pycache__/__init__.cpython-37.pyc +0 -0
- vocoder/bigvgan/__pycache__/__init__.cpython-38.pyc +0 -0
- vocoder/bigvgan/__pycache__/activations.cpython-37.pyc +0 -0
- vocoder/bigvgan/__pycache__/activations.cpython-38.pyc +0 -0
- vocoder/bigvgan/__pycache__/models.cpython-37.pyc +0 -0
- vocoder/bigvgan/__pycache__/models.cpython-38.pyc +0 -0
- vocoder/bigvgan/activations.py +120 -0
- vocoder/bigvgan/alias_free_torch/__init__.py +6 -0
- vocoder/bigvgan/alias_free_torch/__pycache__/__init__.cpython-37.pyc +0 -0
- vocoder/bigvgan/alias_free_torch/__pycache__/__init__.cpython-38.pyc +0 -0
- vocoder/bigvgan/alias_free_torch/__pycache__/act.cpython-37.pyc +0 -0
- vocoder/bigvgan/alias_free_torch/__pycache__/act.cpython-38.pyc +0 -0
- vocoder/bigvgan/alias_free_torch/__pycache__/filter.cpython-37.pyc +0 -0
- vocoder/bigvgan/alias_free_torch/__pycache__/filter.cpython-38.pyc +0 -0
- vocoder/bigvgan/alias_free_torch/__pycache__/resample.cpython-37.pyc +0 -0
- vocoder/bigvgan/alias_free_torch/__pycache__/resample.cpython-38.pyc +0 -0
- vocoder/bigvgan/alias_free_torch/act.py +28 -0
- vocoder/bigvgan/alias_free_torch/filter.py +95 -0
- vocoder/bigvgan/alias_free_torch/resample.py +49 -0
- vocoder/bigvgan/models.py +414 -0
vocoder/bigvgan/__init__.py
ADDED
File without changes
|
vocoder/bigvgan/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (177 Bytes). View file
|
|
vocoder/bigvgan/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (143 Bytes). View file
|
|
vocoder/bigvgan/__pycache__/activations.cpython-37.pyc
ADDED
Binary file (4.14 kB). View file
|
|
vocoder/bigvgan/__pycache__/activations.cpython-38.pyc
ADDED
Binary file (4.05 kB). View file
|
|
vocoder/bigvgan/__pycache__/models.cpython-37.pyc
ADDED
Binary file (13.7 kB). View file
|
|
vocoder/bigvgan/__pycache__/models.cpython-38.pyc
ADDED
Binary file (13.2 kB). View file
|
|
vocoder/bigvgan/activations.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn, sin, pow
|
6 |
+
from torch.nn import Parameter
|
7 |
+
|
8 |
+
|
9 |
+
class Snake(nn.Module):
|
10 |
+
'''
|
11 |
+
Implementation of a sine-based periodic activation function
|
12 |
+
Shape:
|
13 |
+
- Input: (B, C, T)
|
14 |
+
- Output: (B, C, T), same shape as the input
|
15 |
+
Parameters:
|
16 |
+
- alpha - trainable parameter
|
17 |
+
References:
|
18 |
+
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
19 |
+
https://arxiv.org/abs/2006.08195
|
20 |
+
Examples:
|
21 |
+
>>> a1 = snake(256)
|
22 |
+
>>> x = torch.randn(256)
|
23 |
+
>>> x = a1(x)
|
24 |
+
'''
|
25 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
26 |
+
'''
|
27 |
+
Initialization.
|
28 |
+
INPUT:
|
29 |
+
- in_features: shape of the input
|
30 |
+
- alpha: trainable parameter
|
31 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
32 |
+
alpha will be trained along with the rest of your model.
|
33 |
+
'''
|
34 |
+
super(Snake, self).__init__()
|
35 |
+
self.in_features = in_features
|
36 |
+
|
37 |
+
# initialize alpha
|
38 |
+
self.alpha_logscale = alpha_logscale
|
39 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
40 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
41 |
+
else: # linear scale alphas initialized to ones
|
42 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
43 |
+
|
44 |
+
self.alpha.requires_grad = alpha_trainable
|
45 |
+
|
46 |
+
self.no_div_by_zero = 0.000000001
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
'''
|
50 |
+
Forward pass of the function.
|
51 |
+
Applies the function to the input elementwise.
|
52 |
+
Snake ∶= x + 1/a * sin^2 (xa)
|
53 |
+
'''
|
54 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
55 |
+
if self.alpha_logscale:
|
56 |
+
alpha = torch.exp(alpha)
|
57 |
+
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
58 |
+
|
59 |
+
return x
|
60 |
+
|
61 |
+
|
62 |
+
class SnakeBeta(nn.Module):
|
63 |
+
'''
|
64 |
+
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
65 |
+
Shape:
|
66 |
+
- Input: (B, C, T)
|
67 |
+
- Output: (B, C, T), same shape as the input
|
68 |
+
Parameters:
|
69 |
+
- alpha - trainable parameter that controls frequency
|
70 |
+
- beta - trainable parameter that controls magnitude
|
71 |
+
References:
|
72 |
+
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
73 |
+
https://arxiv.org/abs/2006.08195
|
74 |
+
Examples:
|
75 |
+
>>> a1 = snakebeta(256)
|
76 |
+
>>> x = torch.randn(256)
|
77 |
+
>>> x = a1(x)
|
78 |
+
'''
|
79 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
80 |
+
'''
|
81 |
+
Initialization.
|
82 |
+
INPUT:
|
83 |
+
- in_features: shape of the input
|
84 |
+
- alpha - trainable parameter that controls frequency
|
85 |
+
- beta - trainable parameter that controls magnitude
|
86 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
87 |
+
beta is initialized to 1 by default, higher values = higher-magnitude.
|
88 |
+
alpha will be trained along with the rest of your model.
|
89 |
+
'''
|
90 |
+
super(SnakeBeta, self).__init__()
|
91 |
+
self.in_features = in_features
|
92 |
+
|
93 |
+
# initialize alpha
|
94 |
+
self.alpha_logscale = alpha_logscale
|
95 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
96 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
97 |
+
self.beta = Parameter(torch.zeros(in_features) * alpha)
|
98 |
+
else: # linear scale alphas initialized to ones
|
99 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
100 |
+
self.beta = Parameter(torch.ones(in_features) * alpha)
|
101 |
+
|
102 |
+
self.alpha.requires_grad = alpha_trainable
|
103 |
+
self.beta.requires_grad = alpha_trainable
|
104 |
+
|
105 |
+
self.no_div_by_zero = 0.000000001
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
'''
|
109 |
+
Forward pass of the function.
|
110 |
+
Applies the function to the input elementwise.
|
111 |
+
SnakeBeta ∶= x + 1/b * sin^2 (xa)
|
112 |
+
'''
|
113 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
114 |
+
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
115 |
+
if self.alpha_logscale:
|
116 |
+
alpha = torch.exp(alpha)
|
117 |
+
beta = torch.exp(beta)
|
118 |
+
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
119 |
+
|
120 |
+
return x
|
vocoder/bigvgan/alias_free_torch/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
from .filter import *
|
5 |
+
from .resample import *
|
6 |
+
from .act import *
|
vocoder/bigvgan/alias_free_torch/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (252 Bytes). View file
|
|
vocoder/bigvgan/alias_free_torch/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (218 Bytes). View file
|
|
vocoder/bigvgan/alias_free_torch/__pycache__/act.cpython-37.pyc
ADDED
Binary file (1.04 kB). View file
|
|
vocoder/bigvgan/alias_free_torch/__pycache__/act.cpython-38.pyc
ADDED
Binary file (1.03 kB). View file
|
|
vocoder/bigvgan/alias_free_torch/__pycache__/filter.cpython-37.pyc
ADDED
Binary file (2.61 kB). View file
|
|
vocoder/bigvgan/alias_free_torch/__pycache__/filter.cpython-38.pyc
ADDED
Binary file (2.61 kB). View file
|
|
vocoder/bigvgan/alias_free_torch/__pycache__/resample.cpython-37.pyc
ADDED
Binary file (1.98 kB). View file
|
|
vocoder/bigvgan/alias_free_torch/__pycache__/resample.cpython-38.pyc
ADDED
Binary file (1.94 kB). View file
|
|
vocoder/bigvgan/alias_free_torch/act.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch.nn as nn
|
5 |
+
from .resample import UpSample1d, DownSample1d
|
6 |
+
|
7 |
+
|
8 |
+
class Activation1d(nn.Module):
|
9 |
+
def __init__(self,
|
10 |
+
activation,
|
11 |
+
up_ratio: int = 2,
|
12 |
+
down_ratio: int = 2,
|
13 |
+
up_kernel_size: int = 12,
|
14 |
+
down_kernel_size: int = 12):
|
15 |
+
super().__init__()
|
16 |
+
self.up_ratio = up_ratio
|
17 |
+
self.down_ratio = down_ratio
|
18 |
+
self.act = activation
|
19 |
+
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
20 |
+
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
21 |
+
|
22 |
+
# x: [B,C,T]
|
23 |
+
def forward(self, x):
|
24 |
+
x = self.upsample(x)
|
25 |
+
x = self.act(x)
|
26 |
+
x = self.downsample(x)
|
27 |
+
|
28 |
+
return x
|
vocoder/bigvgan/alias_free_torch/filter.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import math
|
8 |
+
|
9 |
+
if 'sinc' in dir(torch):
|
10 |
+
sinc = torch.sinc
|
11 |
+
else:
|
12 |
+
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
13 |
+
# https://adefossez.github.io/julius/julius/core.html
|
14 |
+
# LICENSE is in incl_licenses directory.
|
15 |
+
def sinc(x: torch.Tensor):
|
16 |
+
"""
|
17 |
+
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
18 |
+
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
19 |
+
"""
|
20 |
+
return torch.where(x == 0,
|
21 |
+
torch.tensor(1., device=x.device, dtype=x.dtype),
|
22 |
+
torch.sin(math.pi * x) / math.pi / x)
|
23 |
+
|
24 |
+
|
25 |
+
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
26 |
+
# https://adefossez.github.io/julius/julius/lowpass.html
|
27 |
+
# LICENSE is in incl_licenses directory.
|
28 |
+
def kaiser_sinc_filter1d(cutoff, half_width, kernel_size): # return filter [1,1,kernel_size]
|
29 |
+
even = (kernel_size % 2 == 0)
|
30 |
+
half_size = kernel_size // 2
|
31 |
+
|
32 |
+
#For kaiser window
|
33 |
+
delta_f = 4 * half_width
|
34 |
+
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
35 |
+
if A > 50.:
|
36 |
+
beta = 0.1102 * (A - 8.7)
|
37 |
+
elif A >= 21.:
|
38 |
+
beta = 0.5842 * (A - 21)**0.4 + 0.07886 * (A - 21.)
|
39 |
+
else:
|
40 |
+
beta = 0.
|
41 |
+
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
42 |
+
|
43 |
+
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
44 |
+
if even:
|
45 |
+
time = (torch.arange(-half_size, half_size) + 0.5)
|
46 |
+
else:
|
47 |
+
time = torch.arange(kernel_size) - half_size
|
48 |
+
if cutoff == 0:
|
49 |
+
filter_ = torch.zeros_like(time)
|
50 |
+
else:
|
51 |
+
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
52 |
+
# Normalize filter to have sum = 1, otherwise we will have a small leakage
|
53 |
+
# of the constant component in the input signal.
|
54 |
+
filter_ /= filter_.sum()
|
55 |
+
filter = filter_.view(1, 1, kernel_size)
|
56 |
+
|
57 |
+
return filter
|
58 |
+
|
59 |
+
|
60 |
+
class LowPassFilter1d(nn.Module):
|
61 |
+
def __init__(self,
|
62 |
+
cutoff=0.5,
|
63 |
+
half_width=0.6,
|
64 |
+
stride: int = 1,
|
65 |
+
padding: bool = True,
|
66 |
+
padding_mode: str = 'replicate',
|
67 |
+
kernel_size: int = 12):
|
68 |
+
# kernel_size should be even number for stylegan3 setup,
|
69 |
+
# in this implementation, odd number is also possible.
|
70 |
+
super().__init__()
|
71 |
+
if cutoff < -0.:
|
72 |
+
raise ValueError("Minimum cutoff must be larger than zero.")
|
73 |
+
if cutoff > 0.5:
|
74 |
+
raise ValueError("A cutoff above 0.5 does not make sense.")
|
75 |
+
self.kernel_size = kernel_size
|
76 |
+
self.even = (kernel_size % 2 == 0)
|
77 |
+
self.pad_left = kernel_size // 2 - int(self.even)
|
78 |
+
self.pad_right = kernel_size // 2
|
79 |
+
self.stride = stride
|
80 |
+
self.padding = padding
|
81 |
+
self.padding_mode = padding_mode
|
82 |
+
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
83 |
+
self.register_buffer("filter", filter)
|
84 |
+
|
85 |
+
#input [B, C, T]
|
86 |
+
def forward(self, x):
|
87 |
+
_, C, _ = x.shape
|
88 |
+
|
89 |
+
if self.padding:
|
90 |
+
x = F.pad(x, (self.pad_left, self.pad_right),
|
91 |
+
mode=self.padding_mode)
|
92 |
+
out = F.conv1d(x, self.filter.expand(C, -1, -1),
|
93 |
+
stride=self.stride, groups=C)
|
94 |
+
|
95 |
+
return out
|
vocoder/bigvgan/alias_free_torch/resample.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from .filter import LowPassFilter1d
|
7 |
+
from .filter import kaiser_sinc_filter1d
|
8 |
+
|
9 |
+
|
10 |
+
class UpSample1d(nn.Module):
|
11 |
+
def __init__(self, ratio=2, kernel_size=None):
|
12 |
+
super().__init__()
|
13 |
+
self.ratio = ratio
|
14 |
+
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
15 |
+
self.stride = ratio
|
16 |
+
self.pad = self.kernel_size // ratio - 1
|
17 |
+
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
18 |
+
self.pad_right = self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
19 |
+
filter = kaiser_sinc_filter1d(cutoff=0.5 / ratio,
|
20 |
+
half_width=0.6 / ratio,
|
21 |
+
kernel_size=self.kernel_size)
|
22 |
+
self.register_buffer("filter", filter)
|
23 |
+
|
24 |
+
# x: [B, C, T]
|
25 |
+
def forward(self, x):
|
26 |
+
_, C, _ = x.shape
|
27 |
+
|
28 |
+
x = F.pad(x, (self.pad, self.pad), mode='replicate')
|
29 |
+
x = self.ratio * F.conv_transpose1d(
|
30 |
+
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
31 |
+
x = x[..., self.pad_left:-self.pad_right]
|
32 |
+
|
33 |
+
return x
|
34 |
+
|
35 |
+
|
36 |
+
class DownSample1d(nn.Module):
|
37 |
+
def __init__(self, ratio=2, kernel_size=None):
|
38 |
+
super().__init__()
|
39 |
+
self.ratio = ratio
|
40 |
+
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
41 |
+
self.lowpass = LowPassFilter1d(cutoff=0.5 / ratio,
|
42 |
+
half_width=0.6 / ratio,
|
43 |
+
stride=ratio,
|
44 |
+
kernel_size=self.kernel_size)
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
xx = self.lowpass(x)
|
48 |
+
|
49 |
+
return xx
|
vocoder/bigvgan/models.py
ADDED
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.nn as nn
|
11 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
12 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
+
import numpy as np
|
14 |
+
from .activations import Snake,SnakeBeta
|
15 |
+
from .alias_free_torch import *
|
16 |
+
import os
|
17 |
+
from omegaconf import OmegaConf
|
18 |
+
|
19 |
+
LRELU_SLOPE = 0.1
|
20 |
+
|
21 |
+
def init_weights(m, mean=0.0, std=0.01):
|
22 |
+
classname = m.__class__.__name__
|
23 |
+
if classname.find("Conv") != -1:
|
24 |
+
m.weight.data.normal_(mean, std)
|
25 |
+
|
26 |
+
|
27 |
+
def get_padding(kernel_size, dilation=1):
|
28 |
+
return int((kernel_size*dilation - dilation)/2)
|
29 |
+
|
30 |
+
class AMPBlock1(torch.nn.Module):
|
31 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
|
32 |
+
super(AMPBlock1, self).__init__()
|
33 |
+
self.h = h
|
34 |
+
|
35 |
+
self.convs1 = nn.ModuleList([
|
36 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
37 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
38 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
39 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
40 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
41 |
+
padding=get_padding(kernel_size, dilation[2])))
|
42 |
+
])
|
43 |
+
self.convs1.apply(init_weights)
|
44 |
+
|
45 |
+
self.convs2 = nn.ModuleList([
|
46 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
47 |
+
padding=get_padding(kernel_size, 1))),
|
48 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
49 |
+
padding=get_padding(kernel_size, 1))),
|
50 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
51 |
+
padding=get_padding(kernel_size, 1)))
|
52 |
+
])
|
53 |
+
self.convs2.apply(init_weights)
|
54 |
+
|
55 |
+
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
|
56 |
+
|
57 |
+
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
58 |
+
self.activations = nn.ModuleList([
|
59 |
+
Activation1d(
|
60 |
+
activation=Snake(channels, alpha_logscale=h.snake_logscale))
|
61 |
+
for _ in range(self.num_layers)
|
62 |
+
])
|
63 |
+
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
64 |
+
self.activations = nn.ModuleList([
|
65 |
+
Activation1d(
|
66 |
+
activation=SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
67 |
+
for _ in range(self.num_layers)
|
68 |
+
])
|
69 |
+
else:
|
70 |
+
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
acts1, acts2 = self.activations[::2], self.activations[1::2]
|
74 |
+
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
|
75 |
+
xt = a1(x)
|
76 |
+
xt = c1(xt)
|
77 |
+
xt = a2(xt)
|
78 |
+
xt = c2(xt)
|
79 |
+
x = xt + x
|
80 |
+
|
81 |
+
return x
|
82 |
+
|
83 |
+
def remove_weight_norm(self):
|
84 |
+
for l in self.convs1:
|
85 |
+
remove_weight_norm(l)
|
86 |
+
for l in self.convs2:
|
87 |
+
remove_weight_norm(l)
|
88 |
+
|
89 |
+
|
90 |
+
class AMPBlock2(torch.nn.Module):
|
91 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
|
92 |
+
super(AMPBlock2, self).__init__()
|
93 |
+
self.h = h
|
94 |
+
|
95 |
+
self.convs = nn.ModuleList([
|
96 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
97 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
98 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
99 |
+
padding=get_padding(kernel_size, dilation[1])))
|
100 |
+
])
|
101 |
+
self.convs.apply(init_weights)
|
102 |
+
|
103 |
+
self.num_layers = len(self.convs) # total number of conv layers
|
104 |
+
|
105 |
+
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
106 |
+
self.activations = nn.ModuleList([
|
107 |
+
Activation1d(
|
108 |
+
activation=Snake(channels, alpha_logscale=h.snake_logscale))
|
109 |
+
for _ in range(self.num_layers)
|
110 |
+
])
|
111 |
+
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
112 |
+
self.activations = nn.ModuleList([
|
113 |
+
Activation1d(
|
114 |
+
activation=SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
115 |
+
for _ in range(self.num_layers)
|
116 |
+
])
|
117 |
+
else:
|
118 |
+
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
|
119 |
+
|
120 |
+
def forward(self, x):
|
121 |
+
for c, a in zip (self.convs, self.activations):
|
122 |
+
xt = a(x)
|
123 |
+
xt = c(xt)
|
124 |
+
x = xt + x
|
125 |
+
|
126 |
+
return x
|
127 |
+
|
128 |
+
def remove_weight_norm(self):
|
129 |
+
for l in self.convs:
|
130 |
+
remove_weight_norm(l)
|
131 |
+
|
132 |
+
|
133 |
+
class BigVGAN(torch.nn.Module):
|
134 |
+
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
|
135 |
+
def __init__(self, h):
|
136 |
+
super(BigVGAN, self).__init__()
|
137 |
+
self.h = h
|
138 |
+
|
139 |
+
self.num_kernels = len(h.resblock_kernel_sizes)
|
140 |
+
self.num_upsamples = len(h.upsample_rates)
|
141 |
+
|
142 |
+
# pre conv
|
143 |
+
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3))
|
144 |
+
|
145 |
+
# define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
|
146 |
+
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2
|
147 |
+
|
148 |
+
# transposed conv-based upsamplers. does not apply anti-aliasing
|
149 |
+
self.ups = nn.ModuleList()
|
150 |
+
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
151 |
+
self.ups.append(nn.ModuleList([
|
152 |
+
weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i),
|
153 |
+
h.upsample_initial_channel // (2 ** (i + 1)),
|
154 |
+
k, u, padding=(k - u) // 2))
|
155 |
+
]))
|
156 |
+
|
157 |
+
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
|
158 |
+
self.resblocks = nn.ModuleList()
|
159 |
+
for i in range(len(self.ups)):
|
160 |
+
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
161 |
+
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
162 |
+
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation))
|
163 |
+
|
164 |
+
# post conv
|
165 |
+
if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing
|
166 |
+
activation_post = Snake(ch, alpha_logscale=h.snake_logscale)
|
167 |
+
self.activation_post = Activation1d(activation=activation_post)
|
168 |
+
elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing
|
169 |
+
activation_post = SnakeBeta(ch, alpha_logscale=h.snake_logscale)
|
170 |
+
self.activation_post = Activation1d(activation=activation_post)
|
171 |
+
else:
|
172 |
+
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
|
173 |
+
|
174 |
+
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
175 |
+
|
176 |
+
# weight initialization
|
177 |
+
for i in range(len(self.ups)):
|
178 |
+
self.ups[i].apply(init_weights)
|
179 |
+
self.conv_post.apply(init_weights)
|
180 |
+
|
181 |
+
def forward(self, x):
|
182 |
+
# pre conv
|
183 |
+
x = self.conv_pre(x)
|
184 |
+
|
185 |
+
for i in range(self.num_upsamples):
|
186 |
+
# upsampling
|
187 |
+
for i_up in range(len(self.ups[i])):
|
188 |
+
x = self.ups[i][i_up](x)
|
189 |
+
# AMP blocks
|
190 |
+
xs = None
|
191 |
+
for j in range(self.num_kernels):
|
192 |
+
if xs is None:
|
193 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
194 |
+
else:
|
195 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
196 |
+
x = xs / self.num_kernels
|
197 |
+
|
198 |
+
# post conv
|
199 |
+
x = self.activation_post(x)
|
200 |
+
x = self.conv_post(x)
|
201 |
+
x = torch.tanh(x)
|
202 |
+
|
203 |
+
return x
|
204 |
+
|
205 |
+
def remove_weight_norm(self):
|
206 |
+
print('Removing weight norm...')
|
207 |
+
for l in self.ups:
|
208 |
+
for l_i in l:
|
209 |
+
remove_weight_norm(l_i)
|
210 |
+
for l in self.resblocks:
|
211 |
+
l.remove_weight_norm()
|
212 |
+
remove_weight_norm(self.conv_pre)
|
213 |
+
remove_weight_norm(self.conv_post)
|
214 |
+
|
215 |
+
|
216 |
+
class DiscriminatorP(torch.nn.Module):
|
217 |
+
def __init__(self, h, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
218 |
+
super(DiscriminatorP, self).__init__()
|
219 |
+
self.period = period
|
220 |
+
self.d_mult = h.discriminator_channel_mult
|
221 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
222 |
+
self.convs = nn.ModuleList([
|
223 |
+
norm_f(Conv2d(1, int(32*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
224 |
+
norm_f(Conv2d(int(32*self.d_mult), int(128*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
225 |
+
norm_f(Conv2d(int(128*self.d_mult), int(512*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
226 |
+
norm_f(Conv2d(int(512*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
227 |
+
norm_f(Conv2d(int(1024*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), 1, padding=(2, 0))),
|
228 |
+
])
|
229 |
+
self.conv_post = norm_f(Conv2d(int(1024*self.d_mult), 1, (3, 1), 1, padding=(1, 0)))
|
230 |
+
|
231 |
+
def forward(self, x):
|
232 |
+
fmap = []
|
233 |
+
|
234 |
+
# 1d to 2d
|
235 |
+
b, c, t = x.shape
|
236 |
+
if t % self.period != 0: # pad first
|
237 |
+
n_pad = self.period - (t % self.period)
|
238 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
239 |
+
t = t + n_pad
|
240 |
+
x = x.view(b, c, t // self.period, self.period)
|
241 |
+
|
242 |
+
for l in self.convs:
|
243 |
+
x = l(x)
|
244 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
245 |
+
fmap.append(x)
|
246 |
+
x = self.conv_post(x)
|
247 |
+
fmap.append(x)
|
248 |
+
x = torch.flatten(x, 1, -1)
|
249 |
+
|
250 |
+
return x, fmap
|
251 |
+
|
252 |
+
|
253 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
254 |
+
def __init__(self, h):
|
255 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
256 |
+
self.mpd_reshapes = h.mpd_reshapes
|
257 |
+
print("mpd_reshapes: {}".format(self.mpd_reshapes))
|
258 |
+
discriminators = [DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm) for rs in self.mpd_reshapes]
|
259 |
+
self.discriminators = nn.ModuleList(discriminators)
|
260 |
+
|
261 |
+
def forward(self, y, y_hat):
|
262 |
+
y_d_rs = []
|
263 |
+
y_d_gs = []
|
264 |
+
fmap_rs = []
|
265 |
+
fmap_gs = []
|
266 |
+
for i, d in enumerate(self.discriminators):
|
267 |
+
y_d_r, fmap_r = d(y)
|
268 |
+
y_d_g, fmap_g = d(y_hat)
|
269 |
+
y_d_rs.append(y_d_r)
|
270 |
+
fmap_rs.append(fmap_r)
|
271 |
+
y_d_gs.append(y_d_g)
|
272 |
+
fmap_gs.append(fmap_g)
|
273 |
+
|
274 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
275 |
+
|
276 |
+
|
277 |
+
class DiscriminatorR(nn.Module):
|
278 |
+
def __init__(self, cfg, resolution):
|
279 |
+
super().__init__()
|
280 |
+
|
281 |
+
self.resolution = resolution
|
282 |
+
assert len(self.resolution) == 3, \
|
283 |
+
"MRD layer requires list with len=3, got {}".format(self.resolution)
|
284 |
+
self.lrelu_slope = LRELU_SLOPE
|
285 |
+
|
286 |
+
norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm
|
287 |
+
if hasattr(cfg, "mrd_use_spectral_norm"):
|
288 |
+
print("INFO: overriding MRD use_spectral_norm as {}".format(cfg.mrd_use_spectral_norm))
|
289 |
+
norm_f = weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm
|
290 |
+
self.d_mult = cfg.discriminator_channel_mult
|
291 |
+
if hasattr(cfg, "mrd_channel_mult"):
|
292 |
+
print("INFO: overriding mrd channel multiplier as {}".format(cfg.mrd_channel_mult))
|
293 |
+
self.d_mult = cfg.mrd_channel_mult
|
294 |
+
|
295 |
+
self.convs = nn.ModuleList([
|
296 |
+
norm_f(nn.Conv2d(1, int(32*self.d_mult), (3, 9), padding=(1, 4))),
|
297 |
+
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
298 |
+
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
299 |
+
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
300 |
+
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 3), padding=(1, 1))),
|
301 |
+
])
|
302 |
+
self.conv_post = norm_f(nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1)))
|
303 |
+
|
304 |
+
def forward(self, x):
|
305 |
+
fmap = []
|
306 |
+
|
307 |
+
x = self.spectrogram(x)
|
308 |
+
x = x.unsqueeze(1)
|
309 |
+
for l in self.convs:
|
310 |
+
x = l(x)
|
311 |
+
x = F.leaky_relu(x, self.lrelu_slope)
|
312 |
+
fmap.append(x)
|
313 |
+
x = self.conv_post(x)
|
314 |
+
fmap.append(x)
|
315 |
+
x = torch.flatten(x, 1, -1)
|
316 |
+
|
317 |
+
return x, fmap
|
318 |
+
|
319 |
+
def spectrogram(self, x):
|
320 |
+
n_fft, hop_length, win_length = self.resolution
|
321 |
+
x = F.pad(x, (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode='reflect')
|
322 |
+
x = x.squeeze(1)
|
323 |
+
x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, return_complex=True)
|
324 |
+
x = torch.view_as_real(x) # [B, F, TT, 2]
|
325 |
+
mag = torch.norm(x, p=2, dim =-1) #[B, F, TT]
|
326 |
+
|
327 |
+
return mag
|
328 |
+
|
329 |
+
|
330 |
+
class MultiResolutionDiscriminator(nn.Module):
|
331 |
+
def __init__(self, cfg, debug=False):
|
332 |
+
super().__init__()
|
333 |
+
self.resolutions = cfg.resolutions
|
334 |
+
assert len(self.resolutions) == 3,\
|
335 |
+
"MRD requires list of list with len=3, each element having a list with len=3. got {}".\
|
336 |
+
format(self.resolutions)
|
337 |
+
self.discriminators = nn.ModuleList(
|
338 |
+
[DiscriminatorR(cfg, resolution) for resolution in self.resolutions]
|
339 |
+
)
|
340 |
+
|
341 |
+
def forward(self, y, y_hat):
|
342 |
+
y_d_rs = []
|
343 |
+
y_d_gs = []
|
344 |
+
fmap_rs = []
|
345 |
+
fmap_gs = []
|
346 |
+
|
347 |
+
for i, d in enumerate(self.discriminators):
|
348 |
+
y_d_r, fmap_r = d(x=y)
|
349 |
+
y_d_g, fmap_g = d(x=y_hat)
|
350 |
+
y_d_rs.append(y_d_r)
|
351 |
+
fmap_rs.append(fmap_r)
|
352 |
+
y_d_gs.append(y_d_g)
|
353 |
+
fmap_gs.append(fmap_g)
|
354 |
+
|
355 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
356 |
+
|
357 |
+
|
358 |
+
def feature_loss(fmap_r, fmap_g):
|
359 |
+
loss = 0
|
360 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
361 |
+
for rl, gl in zip(dr, dg):
|
362 |
+
loss += torch.mean(torch.abs(rl - gl))
|
363 |
+
|
364 |
+
return loss*2
|
365 |
+
|
366 |
+
|
367 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
368 |
+
loss = 0
|
369 |
+
r_losses = []
|
370 |
+
g_losses = []
|
371 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
372 |
+
r_loss = torch.mean((1-dr)**2)
|
373 |
+
g_loss = torch.mean(dg**2)
|
374 |
+
loss += (r_loss + g_loss)
|
375 |
+
r_losses.append(r_loss.item())
|
376 |
+
g_losses.append(g_loss.item())
|
377 |
+
|
378 |
+
return loss, r_losses, g_losses
|
379 |
+
|
380 |
+
|
381 |
+
def generator_loss(disc_outputs):
|
382 |
+
loss = 0
|
383 |
+
gen_losses = []
|
384 |
+
for dg in disc_outputs:
|
385 |
+
l = torch.mean((1-dg)**2)
|
386 |
+
gen_losses.append(l)
|
387 |
+
loss += l
|
388 |
+
|
389 |
+
return loss, gen_losses
|
390 |
+
|
391 |
+
|
392 |
+
|
393 |
+
class VocoderBigVGAN(object):
|
394 |
+
def __init__(self, ckpt_vocoder,device='cuda'):
|
395 |
+
vocoder_sd = torch.load(os.path.join(ckpt_vocoder,'best_netG.pt'), map_location='cpu')
|
396 |
+
|
397 |
+
vocoder_args = OmegaConf.load(os.path.join(ckpt_vocoder,'args.yml'))
|
398 |
+
|
399 |
+
self.generator = BigVGAN(vocoder_args)
|
400 |
+
self.generator.load_state_dict(vocoder_sd['generator'])
|
401 |
+
self.generator.eval()
|
402 |
+
|
403 |
+
self.device = device
|
404 |
+
self.generator.to(self.device)
|
405 |
+
|
406 |
+
def vocode(self, spec):
|
407 |
+
with torch.no_grad():
|
408 |
+
if isinstance(spec,np.ndarray):
|
409 |
+
spec = torch.from_numpy(spec).unsqueeze(0)
|
410 |
+
spec = spec.to(dtype=torch.float32,device=self.device)
|
411 |
+
return self.generator(spec).squeeze().cpu().numpy()
|
412 |
+
|
413 |
+
def __call__(self, wav):
|
414 |
+
return self.vocode(wav)
|