File size: 8,743 Bytes
d765024
e8eede2
d765024
 
 
 
 
 
 
 
 
 
 
 
 
6210ba7
d765024
084d09d
 
 
 
 
 
 
d765024
 
 
084d09d
 
 
 
 
d765024
 
b59c607
d765024
084d09d
 
 
 
 
d765024
 
b59c607
d765024
084d09d
 
 
 
 
d765024
 
 
 
 
 
 
 
 
 
 
 
b59c607
 
 
 
d765024
 
 
 
 
084d09d
 
d765024
6748f03
d765024
 
7bd4a64
d765024
 
 
 
 
b59c607
d765024
 
 
 
 
 
 
 
 
 
b59c607
d765024
b59c607
 
 
 
 
d765024
 
 
 
 
084d09d
 
d765024
6748f03
d765024
 
b59c607
d765024
 
 
 
b59c607
d765024
 
 
 
 
 
 
 
b59c607
d765024
b59c607
d765024
b59c607
 
 
 
 
d765024
 
 
 
 
084d09d
 
d765024
6748f03
d765024
 
7bd4a64
d765024
 
 
 
b59c607
d765024
 
 
 
b59c607
d765024
b59c607
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
from transformers import pipeline
import cv2
import numpy as np
import requests
import g4f
import time
import os

theme = gr.themes.Base(
    primary_hue="cyan",
    secondary_hue="blue",
    neutral_hue="slate",
)

API_KEY = os.getenv("API_KEY")

# BRAIN_TUMOR_API_URL = "https://api-inference.huggingface.co/models/Devarshi/Brain_Tumor_Classification"
# BREAST_CANCER_API_URL = "https://api-inference.huggingface.co/models/MUmairAB/Breast_Cancer_Detector"
# ALZHEIMER_API_URL = "https://api-inference.huggingface.co/models/AhmadHakami/alzheimer-image-classification-google-vit-base-patch16"
# headers = {"Authorization": "Bearer "+API_KEY+"", 'Content-Type': 'application/json'}
alzheimer_classifier = pipeline("image-classification", model="AhmadHakami/alzheimer-image-classification-google-vit-base-patch16")
breast_cancer_classifier = pipeline("image-classification", model="MUmairAB/Breast_Cancer_Detector")
brain_tumor_classifier = pipeline("image-classification", model="Devarshi/Brain_Tumor_Classification")

# Create a function to Detect/Classify Alzheimer
def classify_alzheimer(image):
    result = alzheimer_classifier(image)
    prediction = result[0]
    score = prediction['score']
    label = prediction['label']
    return {"score": score, "label": label}


# Create a function to Detect/Classify Breast_Cancer
def classify_breast_cancer(image):
    result = breast_cancer_classifier(image)
    prediction = result[0]
    score = prediction['score']
    label = prediction['label']
    return {"score": score, "label": label}


# Create a function to Detect/Classify Brain_Tumor
def classify_brain_tumor(image):
    result = brain_tumor_classifier(image)
    prediction = result[0]
    score = prediction['score']
    label = prediction['label']
    return {"score": score, "label": label}


# Create the Gradio interface
with gr.Blocks(theme=theme) as Alzheimer:
    with gr.Row():
        with gr.Column():
            gr.Markdown("# Alzheimer Detection and Classification")
            gr.Markdown("> Classify the alzheimer into Mild Demented, Very Mild Demented, Moderate Demented and Non Demented.")
            image = gr.Image()
            output = gr.Label(label='Alzheimer Classification', container=True, scale=2)
            with gr.Row():
                gr.ClearButton([image, output])
                button = gr.Button(value="Submit", variant="primary")
            gr.Examples(inputs=image, fn=classify_alzheimer, examples=[os.path.join(os.path.dirname(__file__), "diseases/Alzheimer/mild_12.jpg"),
                                                                       os.path.join(os.path.dirname(__file__), "diseases/Alzheimer/moderate_21.jpg"),
                                                                       os.path.join(os.path.dirname(__file__), "diseases/Alzheimer/verymild_1013.jpg")])

        button.click(classify_alzheimer, [image], [output])

        def respond(message, history):
            bot_message = g4f.ChatCompletion.create(
                model="gpt-3.5-turbo",
                provider=g4f.Provider.Vercel,
                messages=[{"role": "user",
                           "content": "Your role is Alzheimer Disease Expert. Now I will provide you with the user query. First check if the user query is related to Alzheimer or not. If it is not related to Alzheimer then simply avoid the query by saying this is not my expertise, whereas if related to Alzheimer reply it as usual. Here's the user Query:" + message}],
            )
            time.sleep(1)
            return str(bot_message)


        with gr.Column():
            gr.Markdown("# Health Bot for Alzheimer")
            gr.Markdown("> **Note:** The information may not be accurate. Please consult a Doctor before considering any actions.")
            gr.ChatInterface(respond, autofocus=False, examples=["Explain Alzhiemer diasease.", "What are the types of Alzhiemer diasease?", "Alzhiemer Prevention methods."]).queue()


with gr.Blocks(theme=theme) as BreastCancer:
    with gr.Row():
        with gr.Column():
            gr.Markdown("# Breast Cancer Detection and Classification")
            gr.Markdown("> Classify the breast cancer.")
            image = gr.Image()
            output = gr.Label(label='Breast Cancer Classification', container=True, scale=2)
            with gr.Row():
                button = gr.Button(value="Submit", variant="primary")
                gr.ClearButton([image, output])
            gr.Examples(inputs=image, fn=classify_breast_cancer,
                        examples=[os.path.join(os.path.dirname(__file__), "diseases/Breast_Cancer/class0.png"),
                                  os.path.join(os.path.dirname(__file__), "diseases/Breast_Cancer/class0_1.png"),
                                  os.path.join(os.path.dirname(__file__), "diseases/Breast_Cancer/class1.png"),
                                  os.path.join(os.path.dirname(__file__), "diseases/Breast_Cancer/class1_1.png")])

        button.click(classify_breast_cancer, [image], [output])

        def respond(message, history):
            bot_message = g4f.ChatCompletion.create(
                model="gpt-3.5-turbo",
                provider=g4f.Provider.Vercel,
                messages=[{"role": "user",
                           "content": "Your role is Breast_Cancer Disease Expert. Now I will provide you with the user query. First check if the user query is related to Breast_Cancer or not. If it is not related to Breast_Cancer then simply avoid the query by saying this is not my expertise, whereas if related to Breast_Cancer reply it as usual. Here's the user Query:" + message}],
            )
            time.sleep(1)
            yield str(bot_message)

        with gr.Column():
            gr.Markdown("# Health Bot for Breast Cancer")
            gr.Markdown("> **Note:** The information may not be accurate. Please consult a Doctor before considering any actions.")
            gr.ChatInterface(respond, autofocus=False, examples=["Explain Breast Cancer.", "What are the types of Breast Cancer?", "Breast Cancer Prevention methods."]).queue()


with gr.Blocks(theme=theme) as BrainTumor:
    with gr.Row():
        with gr.Column():
            gr.Markdown("# Brain Tumor Detection and Classification")
            gr.Markdown("> Classify the Brain Tumor.")
            image = gr.Image()
            output = gr.Label(label='Brain_Tumor Classification', container=True, scale=2)
            with gr.Row():
                button = gr.Button(value="Submit", variant="primary")
                gr.ClearButton([image, output])
            gr.Examples(inputs=image, fn=classify_brain_tumor,
                    examples=[os.path.join(os.path.dirname(__file__), "diseases/Brain_Tumor/glioma.jpg"),
                              os.path.join(os.path.dirname(__file__), "diseases/Brain_Tumor/meningioma.jpg"),
                              os.path.join(os.path.dirname(__file__), "diseases/Brain_Tumor/no_tumor.jpg"),
                              os.path.join(os.path.dirname(__file__), "diseases/Brain_Tumor/pituitary.jpg")])

        button.click(classify_brain_tumor, [image], [output])

        def respond(message, history):
            bot_message = g4f.ChatCompletion.create(
                model="gpt-3.5-turbo",
                provider=g4f.Provider.Vercel,
                messages=[{"role": "user",
                           "content": "Your role is Brain Tumor Disease Expert. Now I will provide you with the user query. First check if the user query is related to Brain Tumor or not. If it is not related to Brain Tumor then simply avoid the query by saying this is not my expertise, whereas if related to Brain Tumor reply it as usual. Here's the user Query:" + message}],
            )
            time.sleep(1)
            return str(bot_message)

        with gr.Column():
            gr.Markdown("# Health Bot for Brain Tumor")
            gr.Markdown("> **Note:** The information may not be accurate. Please consult a Doctor before considering any actions.")
            gr.ChatInterface(respond, autofocus=False, examples=["Explain Brain Tumor.", "What are the types of Brain Tumor?", "Brain Tumor Prevention methods."]).queue()


Main = gr.TabbedInterface([Alzheimer, BreastCancer, BrainTumor], ["Alzheimer", "Breast Cancer", "Brain Tumor"],
                          theme=theme,
                          css=".gradio-container {  background: rgba(255, 255, 255, 0.2) !important; box-shadow: 0 8px 32px 0 rgba( 31, 38, 135, 0.37 ) !important; backdrop-filter: blur( 10px ) !important; -webkit-backdrop-filter: blur( 10px ) !important; border-radius: 10px !important; border: 1px solid rgba( 0, 0, 0, 0.5 ) !important;}")

Main.launch()