Spaces:
Running
Running
# A simplified version of the original code - https://github.com/abdur75648/UTRNet-High-Resolution-Urdu-Text-Recognition | |
import torch.nn as nn | |
import torch | |
import numpy as np | |
class dropout_layer(nn.Module): | |
def __init__(self,device): | |
super(dropout_layer, self).__init__() | |
self.device = device | |
def forward(self, input): | |
nums = (np.random.rand(input.shape[1]) > 0.2).astype (int) | |
dummy_array_output = torch.from_numpy(nums).to(self.device) | |
dummy_array_output_t = torch.reshape(dummy_array_output, (input.shape[1], 1)).to(self.device) #Transpose | |
dummy_array_output_f = dummy_array_output_t.repeat(input.shape[0], 1,input.shape[2]).to(self.device) #Same size as input | |
output = input*dummy_array_output_f #element-wise multiplication | |
return output |