#Import Libraries import streamlit as st import tensorflow as tf import numpy as np from tensorflow.keras.utils import load_img,img_to_array from tensorflow.keras.preprocessing import image #Title st.title("Image Classification") #Loader l image upload_file = st.sidebar.file_uploader("Telecharger un fichier", type = ['jpg','jpeg','png']) generate_pred = st.sidebar.button("Predict") model = tf.keras.models.load_model("model.h5") covid_classes = {'COVID19':0,'NORMAL':1,'PNEUMONIA':2,'TUBERCULOSIS':3} if upload_file: st.image(upload_file,caption="Image téléchargée",use_column_width=True) test_image=image.load_img(upload_file,target_size=(64,64)) image_array = img_to_array(test_image) image_array = np.expand_dims(image_array,axis=0) if generate_pred: predictions = model.predict(image_array) classes = np.argmax(predictions[0]) for key,value in covid_classes.items(): if value == classes: st.write("The diagnostic is :",key)