abakirci commited on
Commit
03be6a6
·
verified ·
1 Parent(s): 3a8cbf2

Upload 4 files

Browse files
app.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from tensorflow.keras.models import load_model
3
+ from PIL import Image
4
+ import numpy as np
5
+
6
+ model = load_model("model_grapevine_disease_detection.h5")
7
+
8
+ def process_image(img):
9
+ img = img.convert("RGB")
10
+ img = img.resize((50,50))
11
+ img = np.array(img)
12
+ if img.ndim == 2:
13
+ img = np.stack((img,)*3, axis=-1)
14
+ img = img/255.0
15
+ img = np.expand_dims(img, axis=0)
16
+ return img
17
+
18
+ st.title("GRAPEVINE DISEASE CLASSIFICATION")
19
+ st.divider()
20
+
21
+ col1, col2, col3 = st.columns([1,2,1])
22
+ with col2:
23
+ st.image("grapevine_disease.jpeg")
24
+ st.divider()
25
+
26
+ st.success("Upload your grapevine image and classify the images with the following labels: Black Rot, ESCA, Healthy, and Leaf Blight with CNN deep learning.")
27
+ st.divider()
28
+
29
+ st.write("Upload your image and see the results")
30
+ st.divider()
31
+
32
+ file = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png", "webp"])
33
+
34
+ if file is not None:
35
+ img = Image.open(file)
36
+ st.image(img, caption="Downloaded image")
37
+ image = process_image(img)
38
+ prediction = model.predict(image)
39
+ predicted_class = np.argmax(prediction)
40
+
41
+ class_names = {0:"Black Rot", 1:"ESCA", 2:"Healthy", 3:"Leaf Blight"}
42
+
43
+ st.write(f"Predicted Grapevine Disease: {class_names[predicted_class]}")
grapevine_disease.jpeg ADDED
model_grapevine_disease_detection.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73e6bed46d2e30c75f1e87fa5b712d34547ad8f8860d56ecd05068ff94806988
3
+ size 64980992
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ streamlit
2
+ scikit-learn