File size: 8,587 Bytes
2c4cdb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83838a9
2c4cdb1
 
 
69f8963
2c4cdb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c04f42
2c4cdb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import streamlit as st
from PIL import Image
import ujson
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer

import nltk
nltk.download('stopwords')
nltk.download('punkt')


# Set up the NLTK components
stemmer = PorterStemmer()
stop_words = stopwords.words('english')
tfidf = TfidfVectorizer()

# Load the data
with open('publication_list_stemmed.json', 'r') as f:
    pub_list_first_stem = ujson.load(f)
with open('publication_indexed_dictionary.json', 'r') as f:
    pub_index = ujson.load(f)
with open('author_list_stemmed.json', 'r') as f:
    author_list_first_stem = ujson.load(f)
with open('author_indexed_dictionary.json', 'r') as f:
    author_index = ujson.load(f)
with open('author_names.json', 'r') as f:
    author_name = ujson.load(f)
with open('pub_name.json', 'r') as f:
    pub_name = ujson.load(f)
with open('pub_url.json', 'r') as f:
    pub_url = ujson.load(f)
with open('pub_cu_author.json', 'r') as f:
    pub_cu_author = ujson.load(f)
with open('pub_date.json', 'r') as f:
    pub_date = ujson.load(f)


def search_data(input_text, operator_val, search_type):
    output_data = {}
    if operator_val == 2:
        input_text = input_text.lower().split()
        pointer = []
        for token in input_text:
            if len(input_text) < 2:
                st.warning("Please enter at least 2 words to apply the operator.")
                break
            # if len(token) <= 3:
            #     st.warning("Please enter more than 4 characters.")
            #     break
            stem_temp = ""
            stem_word_file = []
            temp_file = []
            word_list = word_tokenize(token)

            for x in word_list:
                if x not in stop_words:
                    stem_temp += stemmer.stem(x) + " "
            stem_word_file.append(stem_temp)

            if search_type == "publication" and pub_index.get(stem_word_file[0].strip()):
                pointer = pub_index.get(stem_word_file[0].strip())
            elif search_type == "author" and author_index.get(stem_word_file[0].strip()):
                pointer = author_index.get(stem_word_file[0].strip())

            if len(pointer) == 0:
                output_data = {}
            else:
                for j in pointer:
                    if search_type == "publication":
                        temp_file.append(pub_list_first_stem[j])
                    elif search_type == "author":
                        temp_file.append(author_list_first_stem[j])

                temp_file = tfidf.fit_transform(temp_file)
                cosine_output = cosine_similarity(temp_file, tfidf.transform(stem_word_file))

                for j in pointer:
                    output_data[j] = cosine_output[pointer.index(j)]

    else:  # Relevant operator (OR)
        input_text = input_text.lower().split()
        pointer = []
        match_word = []
        for token in input_text:
            if len(input_text) < 2:
                st.warning("Please enter at least 2 words to apply the operator.")
                break
            # if len(token) <= 3:
            #     st.warning("Please enter more than 4 characters.")
            #     break
            temp_file = []
            set2 = set()
            stem_word_file = []
            word_list = word_tokenize(token)
            stem_temp = ""
            for x in word_list:
                if x not in stop_words:
                    stem_temp += stemmer.stem(x) + " "
            stem_word_file.append(stem_temp)

            if search_type == "publication" and pub_index.get(stem_word_file[0].strip()):
                set1 = set(pub_index.get(stem_word_file[0].strip()))
                pointer.extend(list(set1))
            elif search_type == "author" and author_index.get(stem_word_file[0].strip()):
                set1 = set(author_index.get(stem_word_file[0].strip()))
                pointer.extend(list(set1))

            if match_word == []:
                match_word = list({z for z in pointer if z in set2 or (set2.add(z) or False)})
            else:
                match_word.extend(list(set1))
                match_word = list({z for z in match_word if z in set2 or (set2.add(z) or False)})

        if len(input_text) > 1:
            match_word = {z for z in match_word if z in set2 or (set2.add(z) or False)}

            if len(match_word) == 0:
                output_data = {}
            else:
                for j in list(match_word):
                    if search_type == "publication":
                        temp_file.append(pub_list_first_stem[j])
                    elif search_type == "author":
                        temp_file.append(author_list_first_stem[j])

                temp_file = tfidf.fit_transform(temp_file)
                cosine_output = cosine_similarity(temp_file, tfidf.transform(stem_word_file))

                for j in list(match_word):
                    output_data[j] = cosine_output[list(match_word).index(j)]
        else:
            if len(pointer) == 0:
                output_data = {}
            else:
                for j in pointer:
                    if search_type == "publication":
                        temp_file.append(pub_list_first_stem[j])
                    elif search_type == "author":
                        temp_file.append(author_list_first_stem[j])

                temp_file = tfidf.fit_transform(temp_file)
                cosine_output = cosine_similarity(temp_file, tfidf.transform(stem_word_file))

                for j in pointer:
                    output_data[j] = cosine_output[pointer.index(j)]

    return output_data


def app():

        # Load the image and display it
    image = Image.open('Understanding-the-Financial-Aid-Process-Banner.jpg')
    st.image(image)

    # Add a text description
    st.markdown("<p style='text-align: center;'> Uncover the brilliance: Explore profiles, groundbreaking work, and cutting-edge research by the exceptional minds of Fordham University.</p>", unsafe_allow_html=True)


    input_text = st.text_input("Search research:", key="query_input")
    operator_val = st.radio(
        "Search Filters",
        ['Exact', 'Relevant'],
        index=1,
        key="operator_input",
        horizontal=True,
    )
    search_type = st.radio(
        "Search in:",
        ['Publications', 'Authors'],
        index=0,
        key="search_type_input",
        horizontal=True,
    )

    if st.button("SEARCH"):
        if search_type == "Publications":
            output_data = search_data(input_text, 1 if operator_val == 'Exact' else 2, "publication")
        elif search_type == "Authors":
            output_data = search_data(input_text, 1 if operator_val == 'Exact' else 2, "author")
        else:
            output_data = {}

        # Display the search results
        show_results(output_data, search_type)

    # st.markdown("<p style='text-align: center;'> Brought to you with by <a href='https://github.com/iababio'>Boakye I Ababio</a> | Data © Fordham University </p>", unsafe_allow_html=True)


def show_results(output_data, search_type):
    aa = 0
    rank_sorting = sorted(output_data.items(), key=lambda z: z[1], reverse=True)

    # Show the total number of research results
    st.info(f"Showing results for: {len(rank_sorting)}")

    # Show the cards
    N_cards_per_row = 3
    for n_row, (id_val, ranking) in enumerate(rank_sorting):
        i = n_row % N_cards_per_row
        if i == 0:
            st.write("---")
            cols = st.columns(N_cards_per_row, gap="large")
        # Draw the card
        with cols[n_row % N_cards_per_row]:
            if search_type == "Publications":
                st.caption(f"{pub_date[id_val].strip()}")
                st.markdown(f"**{pub_cu_author[id_val].strip()}**")
                st.markdown(f"*{pub_name[id_val].strip()}*")
                st.markdown(f"**{pub_url[id_val]}**")
            elif search_type == "Authors":
                st.caption(f"{pub_date[id_val].strip()}")
                st.markdown(f"**{author_name[id_val].strip()}**")
                st.markdown(f"*{pub_name[id_val].strip()}*")
                st.markdown(f"**{pub_url[id_val]}**")
                st.markdown(f"Ranking: {ranking[0]:.2f}")

        aa += 1

    if aa == 0:
        st.info("No results found. Please try again.")
    else:
        st.info(f"Results shown for: {aa}")


if __name__ == '__main__':
    app()