Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from typing import Dict, List, Union
|
2 |
from google.cloud import aiplatform
|
3 |
from google.protobuf import json_format
|
4 |
from google.protobuf.struct_pb2 import Value
|
5 |
import os
|
6 |
import re
|
7 |
-
import pandas as pd
|
8 |
-
import plotly.express as px
|
9 |
-
import plotly.graph_objects as go
|
10 |
-
import streamlit as st
|
11 |
-
import nltk
|
12 |
import tempfile
|
13 |
|
14 |
-
#
|
15 |
def get_credentials():
|
16 |
-
creds_json_str = os.getenv("JSONSTR") # Get
|
17 |
if creds_json_str is None:
|
18 |
raise ValueError("GOOGLE_APPLICATION_CREDENTIALS_JSON not found in environment")
|
19 |
|
20 |
# Create a temporary file
|
21 |
with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".json") as temp:
|
22 |
-
temp.write(creds_json_str) # Write in
|
23 |
-
temp_filename = temp.name
|
24 |
|
25 |
return temp_filename
|
26 |
|
27 |
-
# Set
|
28 |
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = get_credentials()
|
29 |
|
30 |
max_seq_length = 2048
|
@@ -39,6 +40,7 @@ except LookupError:
|
|
39 |
|
40 |
text_split_tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
|
41 |
|
|
|
42 |
def predict_custom_trained_model_sample(
|
43 |
project: str,
|
44 |
endpoint_id: str,
|
@@ -68,7 +70,7 @@ def predict_custom_trained_model_sample(
|
|
68 |
split_predictions = clean_prediction.split()
|
69 |
predictions_list.extend(split_predictions)
|
70 |
else:
|
71 |
-
print("prediction (unknown type, skipping):", prediction)
|
72 |
return [emotion for emotion in predictions_list if emotion in d_emotion.values()]
|
73 |
|
74 |
d_emotion = {0: 'admiration', 1: 'amusement', 2: 'anger', 3: 'annoyance', 4: 'approval', 5: 'caring', 6: 'confusion',
|
@@ -77,28 +79,30 @@ d_emotion = {0: 'admiration', 1: 'amusement', 2: 'anger', 3: 'annoyance', 4: 'ap
|
|
77 |
20: 'optimism', 21: 'pride', 22: 'realization', 23: 'relief', 24: 'remorse', 25: 'sadness', 26: 'surprise',
|
78 |
27: 'neutral'}
|
79 |
|
80 |
-
st.write("Write or paste any number of document texts to
|
81 |
|
82 |
-
# Define
|
83 |
-
|
|
|
|
|
|
|
84 |
|
85 |
# Add button to fill in sample text
|
86 |
if st.button("Use Sample Text"):
|
87 |
-
user_input =
|
88 |
else:
|
89 |
user_input = st.text_area('Enter Text to Analyze')
|
90 |
|
91 |
button = st.button("Analyze")
|
92 |
|
93 |
-
if
|
94 |
-
alpaca_prompt = """Below is a conversation between a human and an AI agent.
|
95 |
### Instruction:
|
96 |
predict the emotion word or words
|
97 |
### Input:
|
98 |
{}
|
99 |
### Response:
|
100 |
"""
|
101 |
-
|
102 |
instances = []
|
103 |
input_array = text_split_tokenizer.tokenize(user_input)
|
104 |
for sentence in input_array:
|
@@ -144,8 +148,6 @@ if user_input and button:
|
|
144 |
|
145 |
@st.cache_data
|
146 |
def get_emotion_heatmap(predictions):
|
147 |
-
# Create a matrix for heatmap
|
148 |
-
# Count occurrences of each emotion
|
149 |
emotion_counts = pd.Series(predictions).value_counts().reset_index()
|
150 |
emotion_counts.columns = ['Emotion', 'Count']
|
151 |
|
@@ -163,9 +165,9 @@ if user_input and button:
|
|
163 |
))
|
164 |
fig.update_layout(title='Emotion Heatmap', xaxis_title='Predicted Emotion', yaxis_title='Predicted Emotion')
|
165 |
return fig
|
166 |
-
|
167 |
fig_heatmap = get_emotion_heatmap(predictions)
|
168 |
-
|
169 |
tab1, tab2, tab3 = st.tabs(["Emotion Analysis", "Emotion Counts Distribution", "Heatmap"])
|
170 |
with tab1:
|
171 |
st.plotly_chart(fig_pie)
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import nltk
|
4 |
+
import plotly.express as px
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
import pandas as pd
|
7 |
from typing import Dict, List, Union
|
8 |
from google.cloud import aiplatform
|
9 |
from google.protobuf import json_format
|
10 |
from google.protobuf.struct_pb2 import Value
|
11 |
import os
|
12 |
import re
|
|
|
|
|
|
|
|
|
|
|
13 |
import tempfile
|
14 |
|
15 |
+
# Function to get credentials from environment variable and create a temporary file
|
16 |
def get_credentials():
|
17 |
+
creds_json_str = os.getenv("JSONSTR") # Get JSON credentials stored as a string
|
18 |
if creds_json_str is None:
|
19 |
raise ValueError("GOOGLE_APPLICATION_CREDENTIALS_JSON not found in environment")
|
20 |
|
21 |
# Create a temporary file
|
22 |
with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".json") as temp:
|
23 |
+
temp.write(creds_json_str) # Write in JSON format
|
24 |
+
temp_filename = temp.name
|
25 |
|
26 |
return temp_filename
|
27 |
|
28 |
+
# Set environment variable for Google application credentials
|
29 |
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = get_credentials()
|
30 |
|
31 |
max_seq_length = 2048
|
|
|
40 |
|
41 |
text_split_tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
|
42 |
|
43 |
+
# Function to predict emotions using the custom trained model
|
44 |
def predict_custom_trained_model_sample(
|
45 |
project: str,
|
46 |
endpoint_id: str,
|
|
|
70 |
split_predictions = clean_prediction.split()
|
71 |
predictions_list.extend(split_predictions)
|
72 |
else:
|
73 |
+
print(" prediction (unknown type, skipping):", prediction)
|
74 |
return [emotion for emotion in predictions_list if emotion in d_emotion.values()]
|
75 |
|
76 |
d_emotion = {0: 'admiration', 1: 'amusement', 2: 'anger', 3: 'annoyance', 4: 'approval', 5: 'caring', 6: 'confusion',
|
|
|
79 |
20: 'optimism', 21: 'pride', 22: 'realization', 23: 'relief', 24: 'remorse', 25: 'sadness', 26: 'surprise',
|
80 |
27: 'neutral'}
|
81 |
|
82 |
+
st.write("Write or paste any number of document texts to analyse the emotion percentage with your document")
|
83 |
|
84 |
+
# Define the sample text
|
85 |
+
sample_text = ("Once, in a small village nestled in the rolling hills of Tuscany, lived an elderly woman named Isabella. "
|
86 |
+
"She had spent her entire life in this village, raising her children and caring for her garden, which was the most "
|
87 |
+
"beautiful in the region. Her husband, Marco, had passed away many years ago, leaving her with a heart full of memories "
|
88 |
+
"and a small, quaint house that overlooked the lush vineyards.")
|
89 |
|
90 |
# Add button to fill in sample text
|
91 |
if st.button("Use Sample Text"):
|
92 |
+
user_input = sample_text
|
93 |
else:
|
94 |
user_input = st.text_area('Enter Text to Analyze')
|
95 |
|
96 |
button = st.button("Analyze")
|
97 |
|
98 |
+
if button and user_input:
|
99 |
+
alpaca_prompt = """Below is a conversation between a human and an AI agent. write a response based on the input.
|
100 |
### Instruction:
|
101 |
predict the emotion word or words
|
102 |
### Input:
|
103 |
{}
|
104 |
### Response:
|
105 |
"""
|
|
|
106 |
instances = []
|
107 |
input_array = text_split_tokenizer.tokenize(user_input)
|
108 |
for sentence in input_array:
|
|
|
148 |
|
149 |
@st.cache_data
|
150 |
def get_emotion_heatmap(predictions):
|
|
|
|
|
151 |
emotion_counts = pd.Series(predictions).value_counts().reset_index()
|
152 |
emotion_counts.columns = ['Emotion', 'Count']
|
153 |
|
|
|
165 |
))
|
166 |
fig.update_layout(title='Emotion Heatmap', xaxis_title='Predicted Emotion', yaxis_title='Predicted Emotion')
|
167 |
return fig
|
168 |
+
|
169 |
fig_heatmap = get_emotion_heatmap(predictions)
|
170 |
+
|
171 |
tab1, tab2, tab3 = st.tabs(["Emotion Analysis", "Emotion Counts Distribution", "Heatmap"])
|
172 |
with tab1:
|
173 |
st.plotly_chart(fig_pie)
|