ababio's picture
Update app.py
0c23cf6 verified
raw
history blame
7.09 kB
from typing import Dict, List, Union
from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value
import os
import re
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import streamlit as st
import nltk
import json
import tempfile
# process of getting credentials
def get_credentials():
creds_json_str = os.getenv("JSONSTR") # get json credentials stored as a string
if creds_json_str is None:
raise ValueError("GOOGLE_APPLICATION_CREDENTIALS_JSON not found in environment")
# create a temporary file
with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".json") as temp:
temp.write(creds_json_str) # write in json format
temp_filename = temp.name
return temp_filename
# pass
os.environ["GOOGLE_APPLICATION_CREDENTIALS"]= get_credentials()
max_seq_length = 2048
dtype = None
load_in_4bit = True
# Check if 'punkt' is already downloaded, otherwise download it
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
text_split_tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
def predict_custom_trained_model_sample(
project: str,
endpoint_id: str,
instances: Union[Dict, List[Dict]],
location: str = "us-east4",
api_endpoint: str = "us-east4-aiplatform.googleapis.com",
) -> List[str]:
"""
`instances` can be either single instance of type dict or a list
of instances.
"""
client_options = {"api_endpoint": api_endpoint}
client = aiplatform.gapic.PredictionServiceClient(client_options=client_options)
instances = instances if isinstance(instances, list) else [instances]
instances = [
json_format.ParseDict(instance_dict, Value()) for instance_dict in instances
]
parameters_dict = {}
parameters = json_format.ParseDict(parameters_dict, Value())
endpoint = client.endpoint_path(
project=project, location=location, endpoint=endpoint_id
)
response = client.predict(
endpoint=endpoint, instances=instances, parameters=parameters
)
predictions_list = []
predictions = response.predictions
for prediction in predictions:
if isinstance(prediction, str):
clean_prediction = re.sub(r'(\n|Origin|###|Optimization|Response:)', '', prediction)
split_predictions = clean_prediction.split()
predictions_list.extend(split_predictions)
else:
print(" prediction (unknown type, skipping):", prediction)
return [emotion for emotion in predictions_list if emotion in d_emotion.values()]
d_emotion = {0: 'admiration', 1: 'amusement', 2: 'anger', 3: 'annoyance', 4: 'approval', 5: 'caring', 6: 'confusion',
7: 'curiosity', 8: 'desire', 9: 'disappointment', 10: 'disapproval', 11: 'disgust', 12: 'embarrassment',
13: 'excitement', 14: 'fear', 15: 'gratitude', 16: 'grief', 17: 'joy', 18: 'love', 19: 'nervousness',
20: 'optimism', 21: 'pride', 22: 'realization', 23: 'relief', 24: 'remorse', 25: 'sadness', 26: 'surprise',
27: 'neutral'}
st.write(" ")
st.write(" ")
st.write("Write or paste any number of document texts to analyse the emotion percentage with your document")
# Add button to fill in sample text
if st.button("Use Sample Text"):
user_input = "Once, in a small village nestled in the rolling hills of Tuscany, lived an elderly woman named Isabella. She had spent her entire life in this village, raising her children and caring for her garden, which was the most beautiful in the region. Her husband, Marco, had passed away many years ago, leaving her with a heart full of memories and a small, quaint house that overlooked the lush vineyards."
else:
user_input = st.text_area('Enter Text to Analyze')
button = st.button("Analyze")
if user_input and button:
alpaca_prompt = """Below is a conversation between a human and an AI agent. write a response based on the input.
### Instruction:
predict the emotion word or words
### Input:
{}
### Response:
"""
instances = []
input_array = text_split_tokenizer.tokenize(user_input)
for sentence in input_array:
formatted_input = alpaca_prompt.format(sentence.strip())
instance = {
"inputs": formatted_input,
"parameters": {
"max_new_tokens": 4,
"temperature": 0.00001,
"top_p": 0.9,
"top_k": 10
}
}
instances.append(instance)
predictions = predict_custom_trained_model_sample(
project=os.environ["project"],
endpoint_id=os.environ["endpoint_id"],
location=os.environ["location"],
instances=instances
)
emotion_counts = pd.Series(predictions).value_counts(normalize=True).reset_index()
emotion_counts.columns = ['Emotion', 'Percentage']
emotion_counts['Percentage'] *= 100 # Convert to percentage
fig_pie = px.pie(emotion_counts, values='Percentage', names='Emotion', title='Percentage of Emotions in Given Text')
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
@st.cache_data
def get_emotion_chart(predictions):
emotion_counts = pd.Series(predictions).value_counts().reset_index()
emotion_counts.columns = ['Emotion', 'Count']
fig_bar = go.Figure()
fig_bar.add_trace(go.Bar(
x=emotion_counts['Emotion'],
y=emotion_counts['Count'],
marker_color='indianred'
))
fig_bar.update_layout(title='Count of Each Emotion in Given Text', xaxis_title='Emotion', yaxis_title='Count')
return fig_bar
fig_bar = get_emotion_chart(predictions)
@st.cache_data
def get_emotion_heatmap(predictions):
# Create a matrix for heatmap
# Count occurrences of each emotion
emotion_counts = pd.Series(predictions).value_counts().reset_index()
emotion_counts.columns = ['Emotion', 'Count']
heatmap_matrix = pd.DataFrame(0, index=d_emotion.values(), columns=d_emotion.values())
for index, row in emotion_counts.iterrows():
heatmap_matrix.at[row['Emotion'], row['Emotion']] = row['Count']
fig = go.Figure(data=go.Heatmap(
z=heatmap_matrix.values,
x=heatmap_matrix.columns.tolist(),
y=heatmap_matrix.index.tolist(),
text=heatmap_matrix.values,
hovertemplate="Count: %{text}",
colorscale='Viridis'
))
fig.update_layout(title='Emotion Heatmap', xaxis_title='Predicted Emotion', yaxis_title='Predicted Emotion')
return fig
fig_dist = get_emotion_heatmap(predictions)
tab1, tab2, tab3 = st.tabs(["Emotion Analysis", "Emotion Counts Distribution", "Heatmap"])
with tab1:
st.plotly_chart(fig_pie)
with tab2:
st.plotly_chart(fig_bar)
with tab3:
st.plotly_chart(fig_dist)