NDIS-chatbot-hf / app.py
aammari's picture
ndis AI chatbot files
b27a9ef
raw
history blame
5.53 kB
import os
import openai
import sys
sys.path.append('../..')
import utils
import panel as pn # GUI
pn.extension(template='bootstrap')
deployment_name = os.environ['DEPLOYMENT_ID']
def get_completion_from_messages(messages, engine=deployment_name, temperature=0, max_tokens=500):
openai.api_key = os.environ['API_KEY']
openai.api_base = os.environ['API_BASE']
openai.api_type = os.environ['API_TYPE']
openai.api_version = os.environ['API_VERSION']
response = openai.ChatCompletion.create(
engine=engine,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
)
return response.choices[0].message["content"]
def get_moderation_from_input(user_input):
openai.api_key = os.environ['MOD_API_KEY']
openai.api_base = os.environ['MOD_API_BASE']
openai.api_type = "open_ai"
openai.api_version = None
response = openai.Moderation.create(input=user_input)
return response
def process_user_message(user_input, all_messages, debug=True):
delimiter = "```"
# Step 1: Check input to see if it flags the Moderation API or is a prompt injection
response = get_moderation_from_input(user_input)
moderation_output = response["results"][0]
if moderation_output["flagged"]:
print("Step 1: Input flagged by Moderation API.")
return "Sorry, we cannot process this request."
if debug: print("Step 1: Input passed moderation check.")
page_and_qm_response = utils.find_pages_and_qms_only(user_input)
#print(print(page_and_qm_response)
# Step 2: Extract the list of products
page_and_qm_list = utils.read_string_to_list(page_and_qm_response)
#print(page_and_qm_list)
if debug: print("Step 2: Extracted list of quality markers.")
# Step 3: If quality markers are found, look them up
qm_information = utils.generate_output_string(page_and_qm_list)
if debug: print("Step 3: Looked up quality marker information.")
# Step 4: Answer the user question
system_message = f"""
You are an experienced assistant in the domain of Behaviour Support Plans (BSPs). \
Respond in a friendly and helpful tone, with concise answers. \
Your response MUST be ONLY based on the relevant information provided to you.
Make sure to ask the user relevant follow-up questions.
"""
messages = [
{'role': 'system', 'content': system_message},
{'role': 'user', 'content': f"{delimiter}{user_input}{delimiter}"},
{'role': 'assistant', 'content': f"Relevant information:\n{qm_information}"}
]
final_response = get_completion_from_messages(all_messages + messages)
if debug:print("Step 4: Generated response to user question.")
all_messages = all_messages + messages[1:]
# Step 5: Put the answer through the Moderation API
response = get_moderation_from_input(final_response)
moderation_output = response["results"][0]
if moderation_output["flagged"]:
if debug: print("Step 5: Response flagged by Moderation API.")
return "Sorry, we cannot provide this information."
if debug: print("Step 5: Response passed moderation check.")
# Step 6: Ask the model if the response answers the initial user query well
user_message = f"""
Customer message: {delimiter}{user_input}{delimiter}
Agent response: {delimiter}{final_response}{delimiter}
Does the agent response sufficiently answer the customer question? \
Respond with a Y or N character, with no punctuation: \
Y - if the output sufficiently answers the question \
AND the response correctly uses the relevant information provided to the agent \
N - otherwise \
Output a single letter only.
"""
messages = [
{'role': 'system', 'content': system_message},
{'role': 'user', 'content': user_message}
]
evaluation_response = get_completion_from_messages(messages)
if debug: print("Step 6: Model evaluated the response.")
# Step 7: If yes, use this answer; if not, say that you will connect the user to a human
if "Y" in evaluation_response: # Using "in" instead of "==" to be safer for model output variation (e.g., "Y." or "Yes")
if debug: print("Step 7: Model approved the response.")
return final_response, all_messages
else:
if debug: print("Step 7: Model disapproved the response.")
neg_str = "I'm unable to provide the information you're looking for. Please try asking again."
return neg_str, all_messages
chat_box = pn.widgets.ChatBox(value=[
{"You": ""},
{"AI Assistant": "Greetings! Feel free to ask about the BSP summary document, such as pages, quality markers, AI models, and NLP topics."}
])
context = [{"role": "system", "content": "You are Service Assistant"}]
# Function that collects user and assistant messages over time
def collect_messages(event) -> None:
global context
user_input = event.new[-1]
user_message = user_input.get("You")
if user_message is None or user_message == "":
return
response, context = process_user_message(user_message, context, False)
context.append({"role": "assistant", "content": f"{response}"})
chat_box.append({"AI Assistant": response})
# Chat with the chatbot!
chat_box.param.watch(collect_messages, 'value')
dashboard = pn.Column(pn.pane.Markdown("# BSP Summary Document AI Assistant"), chat_box)
dashboard.servable()