Spaces:
Running
Running
aakash0563
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,97 +1,97 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
|
7 |
-
|
8 |
|
9 |
-
#
|
10 |
|
11 |
-
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
|
36 |
|
37 |
|
38 |
|
39 |
-
import google.generativeai as genai
|
40 |
-
import os
|
41 |
-
import os
|
42 |
-
from pdf2image import convert_from_path
|
43 |
-
from PIL import Image
|
44 |
-
import pdf2image
|
45 |
-
import numpy as np
|
46 |
-
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
47 |
|
48 |
-
# Now you can use hugging_face_api_key in your code
|
49 |
|
50 |
-
genai.configure(api_key=GOOGLE_API_KEY)
|
51 |
|
52 |
|
53 |
-
import gradio as gr
|
54 |
-
# print(llm.predict("Who is the PM of India?"))
|
55 |
-
model = genai.GenerativeModel('gemini-pro-vision')
|
56 |
-
def process_image_and_text(images):
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
def input_pdf_setup(uploaded_pdf):
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
|
72 |
|
73 |
-
def extract_answer(uploaded_pdf):
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
|
83 |
-
|
84 |
|
85 |
-
# Create Gradio interface
|
86 |
-
iface = gr.Interface(
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
)
|
94 |
|
95 |
|
96 |
-
# Launch the Gradio application
|
97 |
-
iface.launch(share=True, debug=True)
|
|
|
1 |
+
import google.generativeai as genai
|
2 |
+
from PIL import Image
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
|
7 |
+
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
8 |
|
9 |
+
# Now you can use hugging_face_api_key in your code
|
10 |
|
11 |
+
genai.configure(api_key=GOOGLE_API_KEY)
|
12 |
|
13 |
+
model = genai.GenerativeModel('gemini-pro-vision')
|
14 |
+
def process_image_and_text(image, text):
|
15 |
+
# Assuming image is the input from Gradio
|
16 |
+
if text:
|
17 |
+
image_array = np.asarray(image.data) # Convert memoryview to NumPy array
|
18 |
+
image = Image.fromarray(image_array.astype('uint8'), 'RGB') # Now you can use astype
|
19 |
+
response = model.generate_content([text, image])
|
20 |
+
return response.text
|
21 |
+
else:
|
22 |
+
image_array = np.asarray(image.data) # Convert memoryview to NumPy array
|
23 |
+
image = Image.fromarray(image_array.astype('uint8'), 'RGB') # Now you can use astype
|
24 |
+
response = model.generate_content(["Tell me about this image in bulletin format", image])
|
25 |
+
return response.text
|
26 |
|
27 |
|
28 |
+
iface = gr.Interface(
|
29 |
+
process_image_and_text,
|
30 |
+
inputs=["image", "textbox"], # Specify image and text inputs
|
31 |
+
outputs="textbox", # Specify text output
|
32 |
+
title="Image and Text Processor", # Set the app title
|
33 |
+
)
|
34 |
|
35 |
+
iface.launch(debug=True, share=True) # Launch the Gradio app
|
36 |
|
37 |
|
38 |
|
39 |
+
# import google.generativeai as genai
|
40 |
+
# import os
|
41 |
+
# import os
|
42 |
+
# from pdf2image import convert_from_path
|
43 |
+
# from PIL import Image
|
44 |
+
# import pdf2image
|
45 |
+
# import numpy as np
|
46 |
+
# GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
47 |
|
48 |
+
# # Now you can use hugging_face_api_key in your code
|
49 |
|
50 |
+
# genai.configure(api_key=GOOGLE_API_KEY)
|
51 |
|
52 |
|
53 |
+
# import gradio as gr
|
54 |
+
# # print(llm.predict("Who is the PM of India?"))
|
55 |
+
# model = genai.GenerativeModel('gemini-pro-vision')
|
56 |
+
# def process_image_and_text(images):
|
57 |
+
# response = {}
|
58 |
+
# for i,image in enumerate(images):
|
59 |
+
# # # Assuming image is the input from Gradio
|
60 |
+
# # image_array = np.asarray(image.data) # Convert memoryview to NumPy array
|
61 |
+
# # image = Image.fromarray(image_array.astype('uint8'), 'RGB') # Now you can use astype
|
62 |
+
# response = model.generate_content(["You are act as a tutor Solve all the question in the image in step by step: ", image])
|
63 |
+
# response[i] = response.text
|
64 |
+
# return response
|
65 |
|
66 |
+
# def input_pdf_setup(uploaded_pdf):
|
67 |
+
# # Convert PDF pages to images
|
68 |
+
# images = convert_from_path(uploaded_pdf, dpi=200)
|
69 |
+
# return images
|
70 |
|
71 |
|
72 |
|
73 |
+
# def extract_answer(uploaded_pdf):
|
74 |
+
# """Retrieves answers from processed images and presents them clearly."""
|
75 |
+
# images = input_pdf_setup(uploaded_pdf)
|
76 |
+
# responses = process_image_and_text(images=images)
|
77 |
|
78 |
+
# # Present results in a user-friendly format
|
79 |
+
# answers = []
|
80 |
+
# for i, response in enumerate(responses.values()):
|
81 |
+
# answers.append(f"Answer for question {i+1}:\n {response}")
|
82 |
|
83 |
+
# return "\n".join(answers)
|
84 |
|
85 |
+
# # Create Gradio interface
|
86 |
+
# iface = gr.Interface(
|
87 |
+
# fn=extract_answer,
|
88 |
+
# inputs="file",
|
89 |
+
# outputs="text",
|
90 |
+
# title="Question-Answering with Gemstone.ai",
|
91 |
+
# description="Upload a PDF containing questions, and get step-by-step answers!",
|
92 |
+
# allow_flagging=True,
|
93 |
+
# )
|
94 |
|
95 |
|
96 |
+
# # Launch the Gradio application
|
97 |
+
# iface.launch(share=True, debug=True)
|