Spaces:
Runtime error
Runtime error
File size: 207,075 Bytes
7b5e0ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7961ec4aa6944ceb9cf9347d067f9908",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co./front/assets/huggingface_logo-noborder.sv…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import huggingface_hub\n",
"huggingface_hub.notebook_login(\"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\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from huggingface_hub import snapshot_download\n",
"# meta-llama/Llama-2-70b-chat-hf\n",
"snapshot_download(repo_id=\"BAAI/bge-base-en-v1.5\", cache_dir=\"models\")"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from transformers import (\n",
" AutoTokenizer,\n",
" AutoModelForCausalLM,\n",
" LogitsProcessorList,\n",
" MinLengthLogitsProcessor,\n",
" StoppingCriteriaList,\n",
" MaxLengthCriteria,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = AutoTokenizer.from_pretrained(\"/projectnb/ds549/students/aakash07/llm/models/llama-13b/models--meta-llama--Llama-2-13b-chat-hf/snapshots/0ba94ac9b9e1d5a0037780667e8b219adde1908c\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "999776c97fdb4467bb6ec027f51baf5a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/3 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"model = AutoModelForCausalLM.from_pretrained(\n",
"\"/projectnb/ds549/students/aakash07/llm/models/llama-13b/models--meta-llama--Llama-2-13b-chat-hf/snapshots/0ba94ac9b9e1d5a0037780667e8b219adde1908c\" , \n",
"device_map=\"auto\",\n",
"load_in_4bit=True\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"input_patient = \"System: You are an ophthalmologist specialist. A patient will describe their symptoms. Convert those symptoms into actual medical terms that a doctor might use.\\nPatient Description: Doctor, over the past several weeks, I've been experiencing a persistent discomfort in my eyes. It feels like they are constantly dry and gritty. Whenever I blink, it sometimes feels as though there's sandpaper inside my eyelids. I've found myself blinking excessively, trying to generate some moisture, but it provides only temporary relief. Sometimes, the dryness becomes so intense that my eyes start to burn or sting, especially when I've been focusing on something for an extended period, like reading or working on my computer. Surprisingly, even though they feel dry, I've noticed that my eyes water more than usual. But these tears don't seem to alleviate the dryness at all.\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# set pad_token_id to eos_token_id because GPT2 does not have a PAD token\n",
"model.generation_config.pad_token_id = model.generation_config.eos_token_id\n",
"\n",
"# input_prompt = \"A patient comes with pain in their eyes. Give list of some possible diseases that the patient can have\"\n",
"input_ids = tokenizer(input_patient, return_tensors=\"pt\").input_ids"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[\"System: You are an ophthalmologist specialist. A patient will describe their symptoms. Convert those symptoms into actual medical terms that a doctor might use.\\nPatient Description: Doctor, over the past several weeks, I've been experiencing a persistent discomfort in my eyes. It feels like they are constantly dry and gritty. Whenever I blink, it sometimes feels as though there's sandpaper inside my eyelids. I've found myself blinking excessively, trying to generate some moisture, but it provides only temporary relief. Sometimes, the dryness becomes so intense that my eyes start to burn or sting, especially when I've been focusing on something for an extended period, like reading or working on my computer. Surprisingly, even though they feel dry, I've noticed that my eyes water more than usual. But these tears don't seem to alleviate the dryness at all. I've also noticed that my vision has become slightly blurry, especially when I'm trying to read or focus on something up close.\\n\\nMedical Terms:\\n\\n1. Dry eye syndrome (DES)\\n2. Dryness (xerostomia)\\n3. Grittiness (dysgeusia)\\n4. Burning (odynophagia)\\n5. Sting\"]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"logits_processor = LogitsProcessorList(\n",
" [\n",
" MinLengthLogitsProcessor(20, eos_token_id=model.generation_config.eos_token_id),\n",
" ]\n",
")\n",
"stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=300)])\n",
"\n",
"outputs = model.greedy_search(\n",
" input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria\n",
")\n",
"\n",
"tokenizer.batch_decode(outputs, skip_special_tokens=True)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"torch.cuda.device_count()"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tue Oct 24 11:51:53 2023 \n",
"+---------------------------------------------------------------------------------------+\n",
"| NVIDIA-SMI 535.54.03 Driver Version: 535.54.03 CUDA Version: 12.2 |\n",
"|-----------------------------------------+----------------------+----------------------+\n",
"| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
"| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n",
"| | | MIG M. |\n",
"|=========================================+======================+======================|\n",
"| 0 Tesla V100-SXM2-16GB On | 00000000:18:00.0 Off | 0 |\n",
"| N/A 47C P0 65W / 300W | 13487MiB / 16384MiB | 0% E. Process |\n",
"| | | N/A |\n",
"+-----------------------------------------+----------------------+----------------------+\n",
"| 1 Tesla V100-SXM2-16GB On | 00000000:3B:00.0 Off | 0 |\n",
"| N/A 42C P0 62W / 300W | 15997MiB / 16384MiB | 0% E. Process |\n",
"| | | N/A |\n",
"+-----------------------------------------+----------------------+----------------------+\n",
"| 2 Tesla V100-SXM2-16GB On | 00000000:86:00.0 Off | 0 |\n",
"| N/A 42C P0 60W / 300W | 2211MiB / 16384MiB | 0% E. Process |\n",
"| | | N/A |\n",
"+-----------------------------------------+----------------------+----------------------+\n",
"| 3 Tesla V100-SXM2-16GB On | 00000000:AF:00.0 Off | 0 |\n",
"| N/A 46C P0 62W / 300W | 2869MiB / 16384MiB | 0% E. Process |\n",
"| | | N/A |\n",
"+-----------------------------------------+----------------------+----------------------+\n",
" \n",
"+---------------------------------------------------------------------------------------+\n",
"| Processes: |\n",
"| GPU GI CI PID Type Process name GPU Memory |\n",
"| ID ID Usage |\n",
"|=======================================================================================|\n",
"| 0 N/A N/A 998511 C .../students/aakash07/myenv/bin/python 13484MiB |\n",
"| 1 N/A N/A 998511 C .../students/aakash07/myenv/bin/python 15994MiB |\n",
"| 2 N/A N/A 998511 C .../students/aakash07/myenv/bin/python 2208MiB |\n",
"| 3 N/A N/A 998511 C .../students/aakash07/myenv/bin/python 2866MiB |\n",
"+---------------------------------------------------------------------------------------+\n"
]
}
],
"source": [
"!nvidia-smi"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m42-health/med42-70b"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e45f8f1c0e164764a8d228804d82dab3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Fetching 38 files: 0%| | 0/38 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "85298218841d4cbba61bfa000470deaf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)961f8a65/config.json: 0%| | 0.00/573 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d89c48a13843416ead63cc2db33b1d10",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)f8a65/.gitattributes: 0%| | 0.00/1.52k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "aa80a656f4cc46a89ad6e153c42d066f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)24961f8a65/README.md: 0%| | 0.00/5.95k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0ac83184a37841dd8de63fea394949e1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)neration_config.json: 0%| | 0.00/132 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b0f8d74e4f414faa9c8981410929c180",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00001-of-00029.bin: 0%| | 0.00/9.44G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "765bb5b9ada542c8898c56c568a27308",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)65/added_tokens.json: 0%| | 0.00/21.0 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "506b3ec342014f5faeb9ca4f77a11c20",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00004-of-00029.bin: 0%| | 0.00/9.93G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0821db1b32b14652bfce9faa862fe668",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00003-of-00029.bin: 0%| | 0.00/10.0G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f31bdb331e5a4797a35f4836a7703b2e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00006-of-00029.bin: 0%| | 0.00/9.33G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "33c266a9d57941f7a08addc75b6d019b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00002-of-00029.bin: 0%| | 0.00/9.33G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d157e345b8c24bb395af25e495bfc628",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00005-of-00029.bin: 0%| | 0.00/9.33G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5ad781431860455388fd6a9b17719c6b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00007-of-00029.bin: 0%| | 0.00/9.33G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c0837d0581fb408a97062383ade10672",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00008-of-00029.bin: 0%| | 0.00/10.0G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c2baad798404434388f09ce3ea9953df",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00009-of-00029.bin: 0%| | 0.00/9.93G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "25b06a5efc99447a8c5b82923064e7d2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00010-of-00029.bin: 0%| | 0.00/9.33G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8cc0b3e526ca4d1195114aa038fc57d7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00011-of-00029.bin: 0%| | 0.00/9.33G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0476d24cea634081b93bf52be1fa9d94",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00012-of-00029.bin: 0%| | 0.00/9.33G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e478e31abe3c45dd86d969d740bc9726",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00013-of-00029.bin: 0%| | 0.00/10.0G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "563027f0d5c44b998908448922c8a1c4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00014-of-00029.bin: 0%| | 0.00/9.93G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0e7a07ee9e474e3cbbf3ed68f20179c5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00015-of-00029.bin: 0%| | 0.00/9.33G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ca8ce721db904dfdbc3bb20c76b60f04",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00016-of-00029.bin: 0%| | 0.00/9.33G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a414beeed4df41faad9960fd2d15d5b4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00017-of-00029.bin: 0%| | 0.00/9.33G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9d758badacf74d15bcec868e9a27e6c9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00018-of-00029.bin: 0%| | 0.00/10.0G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8d426858461849478c9445243d1ca162",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00019-of-00029.bin: 0%| | 0.00/9.93G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "06deec770be940b087d758d37411d352",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00020-of-00029.bin: 0%| | 0.00/9.33G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "69f199a198244cddaf31044d45eed2e4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00021-of-00029.bin: 0%| | 0.00/9.33G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "29d32201b2914b65bec53c34cc3d731c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00022-of-00029.bin: 0%| | 0.00/9.33G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c063f7f669a542a0ad53810187bd7158",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00023-of-00029.bin: 0%| | 0.00/10.0G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f453da94234a472daa9fee79fb42fa09",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00024-of-00029.bin: 0%| | 0.00/9.93G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a7a347818e104802a6dcd79e628d1776",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00025-of-00029.bin: 0%| | 0.00/9.33G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d1873fe8f37d4bc59e171a1f24ef0743",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00026-of-00029.bin: 0%| | 0.00/9.33G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e882dc09dfc045eda061a2c916b6cf0c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00027-of-00029.bin: 0%| | 0.00/9.33G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "200668e41ebb4268ab85f97454e887d7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00028-of-00029.bin: 0%| | 0.00/10.0G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d8220b61cd5d4eab82350fc539bcccab",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)l-00029-of-00029.bin: 0%| | 0.00/7.56G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b6b079d68cfa4b77a4767509d6ab0e19",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)model.bin.index.json: 0%| | 0.00/66.7k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7145ad464fc944bea4cbf9a3e1111e5a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)cial_tokens_map.json: 0%| | 0.00/435 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1374f51ab0c944c5be36acb5d1b444fe",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading tokenizer.model: 0%| | 0.00/500k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "221279046cf14de5ae96b0d4bd85d4f7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)okenizer_config.json: 0%| | 0.00/825 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"'/projectnb/ds549/students/aakash07/llm/models/med42-70b/models--m42-health--med42-70b/snapshots/5aed8c898108fdc60abb619c4e1fff24961f8a65'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from huggingface_hub import snapshot_download\n",
"snapshot_download(repo_id=\"m42-health/med42-70b\", cache_dir=\"/projectnb/ds549/students/aakash07/llm/models/med42-70b\")"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[?1l\u001b>---------------------------------------+----------------------+------------\u001b[4h-\u001b[4l========|Tue Oct 24 13:12:52 2023\u001b[1;75H5\u001b[3;19H5\u001b[20;10H4\u001b[20;47H2023\u001b[20;71H 46\u001b[24;80H\u001b[1;75H7\u001b[3;19H7\u001b[20;10H5\u001b[20;31H233\u001b[20;48H101\u001b[20;71H100\u001b[24;80H\u001b[1;75H9\u001b[3;19H9\u001b[20;10H4\u001b[20;33H0\u001b[20;49H83\u001b[20;71H 41\u001b[24;80H\u001b[1;72H3:01\u001b[3;16H3:01\u001b[20;10H3\u001b[20;32H21\u001b[20;48H255\u001b[20;72H 0\u001b[24;80H\u001b[1;75H3\u001b[3;19H3\u001b[20;31H 80\u001b[20;48H307\u001b[24;80H\u001b[1;75H5\u001b[3;19H6\u001b[20;49H93\u001b[24;80H\u001b[1;75H8\u001b[3;19H8\u001b[20;10H2\u001b[20;32H67\u001b[24;80H\u001b[1;74H10\u001b[3;18H10\u001b[20;10H1\u001b[24;80H\u001b[24;1H\u001b[2J\u001b[?47l\u001b8"
]
}
],
"source": [
"!watch nvidia-smi"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import json"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"with open('/projectnb/ds549/students/aakash07/DrVai/data/Review_of_ophthalmology.json') as f:\n",
" json_file = json.load(f)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"chapter_names = list(json_file.keys())"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Diseases of Lens',\n",
" 'Glaucoma',\n",
" 'Cornea',\n",
" 'Conjunctiva',\n",
" 'Sclera and Episclera',\n",
" 'Uveitis',\n",
" 'Orbit',\n",
" 'Ocular Adenexae',\n",
" 'Lacrimal Drainage',\n",
" 'Neurophthalmology',\n",
" 'Fundus',\n",
" 'Vitreous',\n",
" 'Squint and Optics',\n",
" 'Community',\n",
" 'Embryology',\n",
" 'Recent Advances']"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chapter_names"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'C H A P T E R': {'start_index': 758656, 'page_number': 381}}"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"json_file['Recent Advances']"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'C H A P T E R\\nDiseases of Lens\\nANATOMY \\uf077 It is secreted at embryonic stage as a\\nbasement membrane of lens epithelium\\n\\uf077 Lens is biconvex in shape. (Thickest basement membrane in\\n\\uf077 Diameter: 9–10 mm. the body).\\n\\uf077 Refractive index: 1.39. \\uf077 It is thicker anteriorly than posteriorly\\nand at the equator than the poles.\\n\\uf077 Total refractive power: 16 D–17 D.\\nCapsule is thinnest at the\\nStructure of Lens posterior pole.\\n2. Anterior epithelium: It constitutes single\\nEquatorial layer of epithelium cells. They are cuboidal\\nIris Epithelium lens bow\\nat the centre and become columnar at the\\nperiphery.\\n3. Lens fibres: They are of two types:\\na. Nucleus (old lens fibres). It is further\\nCiliary divided into: Embryonic (1–3 months\\nbody gestation), Foetal, Infantile, Adult.\\nHexagonal\\nZonules Cortex Capsulelens fibers b. Cortex (youngest lens fibres). Embr-\\nEmbryonic yonic nucleus is the oldest fibres.\\nnucleus\\n4. Zonules of zinn: They are the suspensory\\nFig. 1.1: Structure of lens ligaments which support the nucleus.\\nLens constitutes of:\\nPHYSIOLOGY\\n1. Lens capsule:\\n\\uf077 80% of glucose is metabolized anaerobically.\\n\\uf077 Lens capsule is a thin, transparent,\\nThis leads to formation of lactic acid in the\\nhyaline collagenous membrane which\\nlens which diffuses into the aqueous\\nsurrounds the lens completely.\\nhumour. Hence, absence of lens will lead to\\n\\uf077 Lens capsule is highly elastic but does decreased lactic acid in the aqueous\\nnot have any elastic tissue. humour.\\n12 Review of Ophthalmology\\n\\uf077 Lens derives its nutrition from aqueous Classification\\nhumour.\\na. Etiologically: (1) Senile (2) Metabolic\\n\\uf077 Antioxidative system of the lens constitutes (3) Complicated (4) Traumatic (5) Radia-\\nof Vitamin C, i.e., ascorbic acid, Vitamin tional (6) Toxic (7) Electric (8) Skin diseases\\nE and glutathione. The detoxifying (9) Osseus diseases (10) Syndromes.\\nenzymes which are responsible to\\nb. According to maturity: (1) Immature\\ncounteract the oxidative damage in the lens\\n(2) Mature (3) Hypermature.\\nare catalase and superoxide dismutase.\\nCataract occurs due to the oxidative c. Anatomically: (1) Capsular cataract–\\ndamage to the lens. Anterior and Posterior (2) Subcapsular\\ncataract–Anterior and Posterior (3) Cortical\\n\\uf077 Glutathione plays a central role in\\ncataract (4) Supranuclear cataract (5)\\nprotecting the lens from oxidative damage.\\nNuclear cataract (6) Polar cataract–\\nIt is a tripeptide synthesized in the lens.\\nAnterior and Posterior.\\nIts levels are reduced in patients of\\ncataract. Most common cause of acquired\\ncataract is senile cataract.\\n\\uf077 Myoinositol is actively transported into the\\nlens by sodium dependent carrier mediated\\nCONGENITAL AND DEVELOPMENTAL\\nmechanism. Its levels are markedly\\nCATARACT\\nreduced in cataract. It is a precursor of\\nmembrane phosphoinositides which are\\nEtiology\\ninvolved in Na/Ka ATPase function. It also\\nparticipates in ascorbic acid transport in\\na. Heredity: Usually dominant.\\nthe lens.\\nb. Maternal factors:\\nLens 1. Malnutrition.\\nWater 99% 66% 2. TORCHS infections, i.e., Toxoplas-\\nNa+ 144 20 mosis, rubella, cytomegalovirus, Herpes\\nand syphilis.\\nNa + K + AT Pase\\nK+ 4.5 125 3. Drug: Thalidomide, Corticosteroid.\\nGlucose 6 1 4. Radiation.\\nLactic acid 7.4 14\\nc. Foetal or Infantile factor:\\nProteins 0.04% (S) 33%\\n1. Anoxia.\\nActive Transport\\nDiffusion 2. Metabolic:\\n(S) Synthesis\\na. Galactosemia–Galactokinase defi-\\nFig. 1.2 ciency.\\nDevelopment of lens: Lens develops from b. Neonatal hypoglycemia.\\nlens vesicle which is derived from surface 3. Congenital anomaly: Lowe’s syndrome,\\nectoderm. Myotonia dystrophica.\\nCataract 4. Birth trauma.\\n5. Malnutrition.\\nDefinition: Any interference in the optical\\nhomogeneity of the lens is called cataract. d. Idiopathic.Diseases of Lens 3\\nTypes\\nCONGENITAL RUBELLA SYNDROME\\na. Cataracta centralis pulverulenta:\\nIt is characterized by the classical triad of–\\n1. Embryonic nuclear cataract.\\nCataract, Headache and Deafness.\\n2. Opacity has powdery appearance.\\n3. Does not affect vision.\\nb. Zonular/lamellar: MNEMONIC\\nMost common type of congenital cataract\\nCHD (Cataract, Headache and Deafness)\\ncausing decreased vision.\\n1. Involves the foetal nucleus. Ocular Features\\n2. Etiology may be: 1. Microphthalmos.\\n2. Cataract: Pearly nuclear or lamellar.\\nA. Genetic: Dominant inheritance.\\n3. Retinopathy: Salt-pepper retinopathy at\\nB. Environmental: (1) Vitamin D defi-\\nposterior pole. It is non progressive.\\nciency, (2) Rubella infection in 7th–\\n4. Glaucoma.\\n8th week of gestation.\\n5. Optic nerve abnormalities.\\n3. Usually bilateral.\\n6. Other complications:\\n4. Causes severe visual defect.\\nA. Pendular nystagmus and strabismus.\\n5. Small linear opacities towards\\nB. Keratitis.\\nequator called Riders are charac-\\nteristic of lamellar cataract. C. Iritis and iris atrophy.\\nD. Extreme refractive error.\\nc. Sutural cataract: Along anterior and\\nposterior sutures. The most common type of cataract in\\nrubella is–Nuclear Pearly.\\nd. Anterior polar cataract.\\nACQUIRED CATARACT\\ne. Posterior polar cataract.\\nf. Coronary cataract: Occurs in adolescence, 1.Senile Cataract\\nclub shaped opacities peripheral in\\nEtiology:\\ndistribution.\\n\\uf077 Heredity.\\ng. Punctate cataract: Also called Blue-dot\\n\\uf077 Dehydrational crisis in diarrhea and\\ncataract or Cataracta-punctate-cerulea–\\ncholera.\\nBluish dots in peripheral part of adolescent\\n\\uf077 UV-Rays.\\nnucleus and deeper cortex are seen. It is the\\nmost common type of congenital cataract. \\uf077 Dietary deficiency of vitamin E,C,B and\\nproteins.\\nh. Total congenital cataract.\\nIt is broadly divided into:\\ni. Congenital membranous cataract: It is due\\n\\uf077 Nuclear.\\nto total or partial absorption of congenital\\ncataract. \\uf077 Cortical.4 Review of Ophthalmology\\nNuclear Cataract: lies right in the pathway of the axial\\nrays, at the nodal point of the eye\\nIt occurs due to following factors:\\n(Nodal point of eye is just behind the\\nw Increased age-related nuclear sclerosis. lens) and thus causes an early loss of\\nw Increase in insoluble proteins. visual acuity.\\nw Deposition of pigments like urochrome\\nMaturation of Cortical Cataract:\\nand melanin.\\n1. Stage of Lamellar Separation.\\nSclerosis makes the lens hard and inelastic\\nleading to shrunken lens with wrinkled 2. Stage of Incipient Cataract.\\ncapsule due to leakage of water. This 3. Immature Senile Cataract (Intumescent\\ncauses inability to accommodate and Cataract—It causes frequent change of\\nprogressive index myopia. It manifests as presbyopic glasses).\\n“Second sight of old age”.\\n4. Mature Senile Cataract (Ripe Cataract).\\nMaturation of Nuclear Cataract: 5. Hypermature Morgagnian Cataract.\\nA. Immature cataract. Causes of frequent change of\\npresbyopic glasses are:\\nB. Mature cataract.\\n1. Early cataract (Intumescent cataract).\\nC. Hypermature nuclear sclerotic cataract.\\n2. Late stage of primary open angle\\nNuclear Cataract may be Tinted:\\nglaucoma.\\nA. Amber. 3. Diabetes mellitus (Hyperglycemia\\nB. Brown—Cataracta Brunescens. causes myopic shift and hypoglycemia\\ncauses hypermetropic shift).\\nC. Black—Cataracta Nigra.\\nD. Red—Cataracta Rubra. Note:\\nNuclear cataract causes Hamarlopia (Day w Intumescent cataract is a cause of\\nBlindness). Phacomorphic glaucoma.\\nCauses of Hamarlopia: w Morgagnian cataract is the most\\ncommon form of senile cataract\\n1. Central corneal opacities.\\ncausing glaucoma.\\n2. Central lenticular opacities. w Most common complication of\\n3. Congenital absence of cones. Morgagnian cataract is Phacolytic\\nCortical Cataract: Decreased levels of Glaucoma. Other complication\\npossible is Phacoanaphylactic\\ntotal protein, amino acids and potassium\\nuveitis.\\nalongwith increased concentration of Na+,\\nleads to hydration and coagulation of w Most common complication of\\nproteins causing cataract. It is of two types: hypermature nuclear sclerotic\\ncataract is subluxation of lens.\\n1. Cuneiform: It generally starts as wedge\\nshaped radial spokes from periphery to 2.Metabolic Cataract\\ncenter. Hence visual disturbances are\\ncomparatively at the late stage. a. Diabetes Mellitus:\\n2. Cupulliform: These are posterior sub- w Causes senile cataract at early age (i.e.,\\ncapsular opacities. This type of cataract presenile cataract).Diseases of Lens 5\\nw Typical morphology is Snow-Flake descements membrane is due to\\nOr Snow-Storm Cataract. copper deposition and is patho-\\nw Increased glucose leads to sorbitol gnomic of Wilson’s disease.\\npathway (Due to saturation of other Note: Fleischer’s ring is iron\\nmetabolic pathways like glycolysis and deposition at the base of the cone in\\nkrebs cycle. When enzyme hexokinase patients of keratoconus.\\nis saturated or inhibited, sorbitol path- e. Lowe’s Syndrome (Oculocere-\\nway is the only pathway remaining for brorenal syndrome): It is an\\nglucose metabolism.\\ninborn error of aminoacid metabolism.\\nw This sorbitol accumulation in the lens Ocular Features:\\n(Due to Aldose Reductase pathway)\\n1. Congenital cataract.\\nleads to overhydration of lens causing\\ncataract. 2. Microphakia.\\n3. Posterior lentiglobus/Posterior Lenti-\\nb. Galactosaemia:\\nconus.\\nw Deficiency of GPUT (Galactose-\\n4. Glaucoma.\\nphosphouridyl transferase) causes Oil\\nDroplet Cataract. f. Mannosidosis: Deficiency of alpha-\\nw Deficiency of Galactokinase causes mannosidase leads to mannose rich\\noligosaccharides in tissues causing\\nlamellar cataract.\\nspoke like posterior capsular cataract.\\nc. Hypocalcaemia: Due to decreased\\nparathyroid activity, i.e., Hypoparathy- g. Fabry’s Disease:\\nroidism.\\nw It is due to deficiency of alpha-\\nd. Wilson’s Disease: Wilson’s disease\\nGalactosidase.\\n(Hepatolenticular degeneration) is a\\nOcular Features:\\nrare condition caused by deficiency of\\nalpha —globulin, ceruplasmin. It is 1. Spoke like cataract—No impairment\\n2\\ncharacterized by widespread deposition of vision.\\nof copper in the tissues and becomes\\n2. Vortex Keratopathy.\\nmanifest in 3 ways:\\n1. Liver disease. 3.Complicated Cataract\\n2. Neurological involvement of the\\nClinical Features:\\nbasal ganglion.\\n3. Psychiatric features. w It is posterior cortical or more\\ncommonly posterior subcapsular due to\\nOcular Features are:\\nposterior segment disease.\\n1. Sunflower Cataract: This type of\\nw It is anterior cortical due to anterior\\ncataract also occurs in blunt trauma\\nsegment disease.\\nwhere it is also known as Rossete\\nCataract. w Most commonly it is Posterior sub-\\ncapsular.\\n2. K.F. Ring (Kayser-Fleischer Ring):\\nGolden brown discoloration of w Spreads axially.6 Review of Ophthalmology\\nw Has Bread Crumb appearance. 5. Busulphan: It is given for treatment of\\nw Polychromatic luster is the patho- CML. It causes PSC, i.e., posterior sub-\\ncapsular cataract.\\ngnomic feature of complicated\\ncataract. 6. Amiodarone: Anterior subcapsular\\ncataract. Also causes vortex keratopathy.\\nCauses:\\n7. Cu, Fe, Au: Gold is used for the\\n1. Inflammatory–Iridocyclitis, Pars- treatment of rheumatoid arthritis and\\nplanitis, Choroiditis, Endophthalmitis, causes ASC.\\nCorneal ulcer. w Most common ocular compli-\\n2. Degenerative–Retinitis pigmentosa, cation of steroid is–Glaucoma.\\nBest disease (It is dystrophy of RPE Occurrence of glaucoma is\\ncells), Myopia. genetically monitored. Less common\\nin short term steroid therapy or\\n3. Tumours.\\nalternate day therapy.\\n4. Glaucoma–Primary and Secondary.\\nw Oral steroids more commonly\\n5. Retinal detachment. lead to cataract and topical\\nHypermetropia is not a degenerative steroids more commonly lead to\\ndisease hence complicated cataract glaucoma.\\ndoes not occur in hypermetropia but w Both phenothiazines (chlorpromazine)\\noccurs in myopia. and chloroquine can cause cataract\\nbut phenothiazines are most\\n4.Toxic Cataract\\ncommonly mentioned in relation to\\ncataract formation.\\nCauses:\\n5.Traumatic Cataract\\n1. Corticosteroids: Typically discoid,\\nposterior sub-capsular cataract which\\nFeatures of Blunt Trauma/\\nat a later stage involves anterior\\nsubcapsular region. Steroids both Concussion Injury:\\nsystemic and topical are cataracto-\\n1. Rossette-shaped cataract: It is also\\ngenic.\\ncalled sunflower cataract. It mainly\\n2. Phenothiazines: Deposition of fine yellow involves posterior cortex first.\\nbrown granules under the anterior 2. Vossius ring: It is the imprint of iris\\ncapsule in pupillary zone which develop pigment on the anterior capsule of the\\ninto large stellate opacities and finally lens, due to blunt trauma.\\nanterior polar cataract.\\n3. Berlins edema: It is also called\\n3. Chloroquine: (Not hydroxychloroquine) Commotio Retinae. It is macular edema\\ncauses white, flaky posterior sub- after blunt trauma and is morpho-\\ncapsular cataract. logically described as “cherry-red spot”.\\n4. Anticholinesterases: Commonly causes 4. Angle-recession glaucoma: Angle\\nanterior subcapsular cataract. Mainly recession occurs due to tear in ciliary\\ndue to long acting miotics like DFP, body after blunt trauma. Glaucoma is\\nEcothiophate, Demecarium bromide. due to damage in trabecular network.Diseases of Lens 7\\n6.Radiational Cataract 2. Ptosis—Usually bilateral.\\nw It occurs due to damage to lens by all 3. Pigmentary retinopathy, i.e., salt\\ntypes of radiations namely UV rays, and pepper fundus.\\nInfrared rays, X-rays/Y-rays or neutrons. 4. Pupillary changes—Light-near\\nw Infrared rays causes “Glass Blower’s” or dissociation.\\nGlass worker’s cataract. 5. Low intraocular—pressure.\\nw MRI has no radiation exposure as it is Hence, we remember its ocular\\ndone by ultrasonic energy and not features as 5 Ps.\\nradiations.\\n2. Atopic dermatitis: Stellate opacities\\nw Most common type of radiational\\nmostly posterior.\\ncataract is Posterior subcapsular\\n3. Diabetes mellitus: It causes snowstorm\\ncataract. They are punctate subcapsular\\nor snowflake opacities.\\nopacities which mature rapidly.\\n7.Syndermatotic Cataract SYNDROMES ASSOCIATED WITH\\nCATARACT\\nThese are cataracts which occur due to skin\\ndiseases.\\nA.Down’s Syndrome\\nCauses:\\nOcular Features:\\nw Atopic dermatitis is the most common 1. Shortened and slanted palpebral fissure.\\ncause.\\n2. Neonatal ectropion.\\nw Poikiloderma.\\n3. Lateral trichiasis and entropion.\\nw Scleroderma.\\n4. Keratoconus.\\n8.Pre-Senile Cataract 5. Cataract.\\nThese are cataracts which occur in young 6. Brushfield spots are light coloured\\nage. spots on iris.\\nB.Others\\nCauses:\\nw Werner’s syndrome.\\n1. Myotonic dystrophy: Myotonic dys-\\ntrophy or Dystrophia myotonica is a w Rothmund’s syndrome.\\ngeneralized dominantly inherited\\nmyopathy characterized by myotonia of CLINICAL FEATURES OF CATARACT\\nperipheral muscles and muscle wasting.\\n1. Misty vision with distortion of vision.\\nOcular Features:\\n2. Loss of vision.\\n1. Pre-senile cataract\\n3. Coloured halos.\\nw “Christmas-tree cataract”—\\nOther causes of coloured halos are:\\nposterior subcapsular, stellate\\nplaque. w Mucopurulent conjunctivitis.\\nw Small iridescent, polychromatic w Acute congestive angle closure\\ncrystals. glaucoma.8 Review of Ophthalmology\\nFinchams Test: It helps to know the 4. Phacoemulsification: Cataract removal\\ncause of halos whether it is due to cataract using phacoemulsification is achieved by\\nor glaucoma. A stenopic slit is passed in ultrasonic fragmentation and aspiration of\\nfront of the eye which is seeing the halos, the lens material. The tip of the phaco-\\nif the halos break then it is due to cataract emulsification hand piece is composed of a\\nand if not then it is due to glaucoma. hollow (approximately 1 mm) titanium\\n4. Black spots in front of eyes. needle that transmits vibrations at a high\\nspeed (30,000 to 60,000 cycles/sec) to\\n5. Glare.\\nemulsify the cataract. These vibrations are\\n6. Uniocular diplopia or polyopia seen in stage\\ntransferred from piezoelectric or magneto-\\nof intumescent cataract.\\nstrictive crystals.\\n5. Lensectomy with anterior vitrectomy:\\nCOMPLICATIONS OF LONG\\nLens in toto with anterior vitreous is\\nSTANDING CATARACT\\nremoved. This procedure is specially opted\\n1. Uveitis. in children when ICCE is indicated. This\\nis because in children there is strong\\n2. Subluxation or dislocation of lens (In\\nadhesion between posterior surface of lens\\nnuclear sclerotic cataract).\\nand anterior hyaloid face of vitreous and\\n3. Glaucoma: Phacoanaphylactic/Phaco-\\nhence any pulling can cause retinal\\nmorphic/Phacolytic.\\ndetachment.\\nMANAGEMENT OF CATARACT 6. Mydriatics/optical iridectomy: This\\nprocedure can be opted for congenital\\nThe first line of treatment in cataract is stationary cataracts but now it is more of\\nsurgery. a theoretical purpose and not opted for.\\nModalities of Treatment of Cataract 7. ECCE with PC IOL with primary posterior\\n1. ICCE (Intracapsular cataract extraction): It capsulotomy: Primary posterior capsulo-\\nconstitutes removal of lens alongwith the tomy is done in children as they are very\\ncapsule. The methods of ICCE are: 1. prone to develop posterior capsular\\nCryoextraction 2. Forceps method (Arrugas opacification after few days of surgery due\\nforceps are used) 3. Irisophake 4. Wire to intense postoperative inflammations.\\nVectis 5. Indiansmith method (Also called\\nDiscission and Needling done in\\ntumbling method). The best method is\\ncongenital cataract are now obsolete\\ncryoextraction. Today the only\\nprocedures.\\nindication of ICCE is subluxation of\\nPreoperative evaluation of cataract\\nlens.\\nsurgery includes:\\n2. ECCE with PC IOL (Extracapsular cataract\\nextraction): It constitutes removal of lens I. General Examination for:\\nleaving behind the posterior capsule on\\n\\uf077 Diabetes mellitus.\\nwhich artificial lens is implanted.\\n\\uf077 Hypertension.\\n3. Manual small incision cataract surgery:\\n\\uf077 Cardiac problems.\\nThis is sutureless small incision cataract\\nsurgery without using the phacoprobe. \\uf077 Obstructive lung disorders.Diseases of Lens 9\\nw Any potential source of infection in the w State of endothelial cells.\\nbody like—septic gums, urinary tract\\nE. Intraocular pressure measurement.\\ninfection.\\nF. Gonioscopy is not done routinely. It is\\nII. Ocular Examination:\\nonly when the IOP is found raised, we\\nA. Retinal function test: can do to assess the state of the angle.\\n1. Perception of light.\\nSURGICAL TECHNIQUES\\n2. Projection of rays—Easy test to\\nassess the function of peripheral\\nECCE\\nretina.\\n(a)Limbal partial thickness incision is made\\n3. Test for Marcus Gunn pupillary\\nfrom 10 o’ clock to 2 o’ clock.\\nresponse.\\n(b)Anterior chamber is formed by viscoelastic\\n4. Two light discrimination.}\\nthrough a small full thickness incision.\\nMacular\\n5. Maddox rod test.\\nfunction (c) Anterior capsulotomy is done (Can opener\\n6. Laser interferometry. test\\ntechnique or Envelope technique).\\n7. Stereoacuity.\\n(d)Partial thickness limbal incision is made\\n8. Color perception—It indicates that full-thickness by corneal scissors.\\noptic nerve is relatively normal.\\n(e) Hydrodissection and hydrodelineation is\\n9. Entoptic visualization is also used to done.\\nindicate retinal function but it is a\\n(f) Nucleus is prolapsed.\\nsubjective test where the patient\\n(g)Cortical matter is aspirated.\\nperceives his own vasculature.\\n10. Indirect ophthalmoscopy. (h)IOL is implanted.\\nB. Objective tests are indicated if some (i) Incision is sutured by radial sutures.\\nretinal pathology suspected. BSS (i.e., Basal salt solution) with glutathione\\ni. ERG—Electroretinogram. is the ideal irrigating fluid in cataract\\nsurgery as it resembles the aqueous humour\\nii. EOG—Electrooculogram.\\nmost.\\niii. VER—Visually-Evoked-Response.\\nAfter cataract surgery, stitches are removed\\nC. Search for local source of infection: at 6 weeks post-operative, and refraction\\nw Conjunctivitis. should be done after 2 weeks of the suture\\nremoval so that any change in corneal\\nw Blepharitis.\\ncurvature due to the sutures (tight or loose)\\nw Meibomitis. is stabilized. (But if in the question, 8 weeks\\nw Lacrimal sac infection—lacrimal is not an alternative, we will mark 6 weeks\\nas the correct answer). This schedule is for\\nsyringing is done.\\nconventional cataract surgery (with sutures).\\nD. Slit lamp examination of anterior\\nIn case of sutureless cataract surgery\\nsegment of eye:\\nwith phaco, refraction can be done after\\nw Presence of uveitis. 1–2 weeks.10 Review of Ophthalmology\\nSmall Incision Cataract Surgery Advantages:\\n(SICS)\\n1. Normal life activity regained faster.\\nECCE can also be done through self-sealing 2. Minimum post-operative astigmatism.\\nsmall incision, which does not need any\\nNote:\\nsutures. This sutureless surgery can be either\\n\\uf077 Vitreous haemorrhage and RD occurs\\nby phaco machine, which is called Phaco-\\nmore commonly in ICCE due to vitreous\\nemulsification or manually called Non-phaco\\ntraction. In ECCE since the posterior\\nsutureless cataract surgery.\\ncapsule (PC) is intact this complication\\n1. Manual small incision cataract\\nis less common.\\nsurgery:\\n\\uf077 Cystoid macular edema (CME) after\\nProcedure:\\ncataract surgery (called Irvine-Gass\\n(a) Triplanar scleral tunnel is made. syndrome) is attributed to both vitreous\\ntraction and prostaglandins released\\n(b) Anterior chamber is formed by\\nduring inflammation. As there is an\\nviscoelastic.\\nintact PC in ECCE hence again this\\n(c) Anterior capsulotomy is done (Preferably\\ncomplication is less common in ECCE.\\nCCC, i.e., continues curvilinear capsu-\\n\\uf077 IOL implantation in diabetic patient\\nlorrhexis or can opener).\\nshould be done after PRP (pan-retinal\\n(d) Hydrodissection and hydrodelineation is\\nphotocoagulation). But if the patient has\\ndone.\\ndeveloped diabetic cataract then IOL\\n(e) Nucleus is first prolapsed in the anterior implantation becomes a prerequisite for\\nchamber and then prolapsed out by proper visualization of fundus and PRP.\\nviscoelastic called viscoexpression.\\n\\uf077 An uncontrolled glaucoma is a contra-\\n(f) Cortical matter is aspirated and IOL indication for IOL implantation surgery.\\nimplanted. If we have to implant a First the glaucoma has to be controlled\\nnonfoldable lens then we need to extend as increased intraocular tension can\\nour scleral incision. lead to per-operative complications.\\n(g) No sutures are required as it is a self- \\uf077 Phacoemulsification is less preferred in\\nsealing incision. black cataract, i.e., grade 4 or grade 5\\nnuclear cataract.\\n2. Phacoemulsification:\\nMANAGEMENT OF PEDIATRIC\\nProcedure:\\nCATARACT\\n(a) Scleral tunnel with an external\\nincision of 3 mm to 3.5 mm is made/ In both bilateral and unilateral cases,\\nCorneal incision can also be made. primary implantation is indicated as soon as\\nthe patient is fit for anesthesia, ideally\\n(b) Circular curvilinear capsulorrhexis\\nbetween 2 and 3 months of age. The earlier\\ndone.\\nthe surgery is done, the better is the chance\\n(c) Hydrodissection and Hydrodelineation\\nthat deep amblyopia can be overcome as the\\ndone and lens material emulsified and\\nvisual reflexes develop by 5–6 months of age.\\naspirated along with the cortical\\nUnilateral cases are particularly at a risk of\\nmatters.\\ndeveloping deep amblyopia and hence dealt\\n(d) Foldable IOL implanted. with more seriously.Diseases of Lens 11\\nManagement can be divided according to two \\uf077 PC-IOL–It is of two types J-loop or\\nage groups: C-loop. C-loop is preferred. Best option for\\n1. Patients younger than 2 years. IOL implantation is posterior capsule as it\\nis most physiological.\\n2. Patients between 2–8 years.\\nBiometry:\\nGuidelines for the Choice of\\nIntraocular Lens The process of calculating the power of\\nintraocular IOL is known as biometry.\\n1. < 2 years old:\\nIt is done by SRK formula:\\n\\uf077 Do biometry and undercorrect by 20%.\\nSRK–I\\nOR\\n\\uf077 Use axial length measurements only. P = A – 2.5 L – 0.9 K\\nA is a constant depending on the surgeon and\\nAxial length IOL diopteric power\\nthe type of IOL.\\n17 mm 28 D\\nL is the axial length and is measured by\\n18 mm 27 D USG-A scan.\\n19 mm 26 D K is the keratometry reading (Average of K1\\n20 mm 24 D and K2) and is measured by Keratometer.\\n21 mm 22 D SRK-II: It is the corrected form of SRK-I,\\ntaking into account any unusual axial length\\n2. Between 2 years to 8 years: Do biometry\\nof the eye (i.e., too long or too short).\\nand undercorrect by 10%.\\nHence preferred choice is SRK-II.\\nThe undercorrection of the IOL power is done\\nto take into account the myopic shift of power COMPLICATIONS OF CATARACT\\nas the child grows.\\nSURGERY\\nThe total diameter of IOL in children should\\nOperative:\\nnot exceed 12 mm.\\n1. SR muscle laceration.\\nIOLS\\n2. Excessive bleeding during conjunctival flap\\npreparation.\\nMaterials:\\n3. Irregular incision.\\n\\uf077 Commonly used material of IOL (Non-\\n4. Injury to cornea, DM-detachment.\\nfoldable) is PMMA (Polymethylmetha-\\ncrylate). 5. Iris injury and iridodialysis.\\n\\uf077 Materials for foldable IOLs are: Hydrogel, 6. Accidental rupture of lens capsule.\\nSilicon and Acrylic.\\n7. Vitreous loss.\\nTypes of Non-Foldable IOLs: 8. Expulsive haemorrhage.\\n\\uf077 AC-IOL-Kelman multiplex. Early Post-Operative:\\n\\uf077 Iris-supported lens–Worst’s or Singh’s iris 1. Hyphema.\\nclaw lenses. 2. Iritis and iris prolapse.12 Review of Ophthalmology\\n3. Striate keratopathy. Types:\\n4. Flat anterior chamber. a. Sunset syndrome: Inferior subluxation\\nof IOL.\\n5. Bacterial endophthalmitis: Painful.\\nb. Sunrise syndrome: Superior subluxa-\\n6. Glaucoma due to retained viscoelastic.\\ntion of IOL.\\nLate Post-Operative:\\nc. Lost lens syndrome: Complete dislo-\\n(All are painless conditions) cation of IOL in the vitreous cavity.\\n1. CME. d. Windshield wiper syndrome: It denotes\\n2. RD. the movement of the superior haptic\\nwith the movement of the head. This\\n3. Epithelial in-growth.\\noccurs due to implantation of a very\\n4. Fibrous down growth. small lens in the ciliary sulcus.\\n5. After cataract. 8. Toxic lens syndrome: It indicates the uveal\\nRD occurs more commonly in aphakes inflammation which occurs due to lens\\ncompared to pseudophakes. The patient will material or the ethylene gas used to sterilise\\npresent as floaters and sudden loss of vision. the lens.\\n\\uf077 Most dreaded complication of\\nIOL-Related\\ncataract surgery is–Endophthal-\\n1. Corneal endothelial damage. mitis. It may be early onset or late\\nonset.\\n2. Uveitis: Mainly with AC-IOLs and iris-claw\\nlenses. Early Onset:\\n3. Secondary glaucoma. 1. Staphylococcal epidermidis is the\\nmost common organism isolated\\n4. Anisocoria (difference in size of pupil):\\nfrom post-surgical endophthalmitis.\\nCommonly when iris claw lenses are\\nimplanted. It can also occur in PC-IOL 2. Other organisms are: Staph aureus,\\nimplantation when there is iris hook by the Pseudomonas and Proteus.\\nhaptic. Late Onset:\\n5. Cystoid macular edema: Its incidence is 1. Propionobacterium acne.\\nspecially more in iris-claw lenses or AC-\\n2. Fungal infection.\\nIOLs when, there is no posterior capsule.\\n\\uf077 Most common late complication of\\nCME after cataract surgery is known as\\ncataract surgery is–After cataract\\n“Irvine–Gass Syndrome”.\\nor PCO.\\n6. UGH syndrome:\\nAfter Cataract\\n\\uf077 Uveitis/glaucoma/hyphema syndrome.\\n\\uf077 Occurs with rigid AC-IOLs. \\uf077 It denotes opacification of posterior capsule\\nafter cataract surgery.\\n7. Malposition of IOLs:\\n\\uf077 It is also known as secondary cataract.\\nIt causes:\\n\\uf077 It may present with various morphological\\na. Astigmatism, if IOL is tilted.\\nforms namely–Elschnig’s pearls,\\nb. Decentration of IOL leads to glare, Soemmering’s rings or just a diffuse\\nhalos, rings of light, uniocular diplopia. opacification.Diseases of Lens 13\\nw Treatment: Homocystinuria: It is an inborn error of\\nmetabolism caused by deficiency of enzyme –\\n(a) Surgical capsulotomy by zeiglers knife.\\nCystathione synthetase leading to increased\\n(b) Laser capsulotomy by Nd-Yag laser\\nlevel of homocysteine in plasma and urine. It\\nwhich is a photodisruptive or cutting\\nis characterized by skeletal deformities\\nlaser.\\nsimilar to Marfan’s syndrome and mental\\nhandicap.\\nDISPLACEMENT OF THE LENS\\nOcular Features:\\nSubluxation is partial dislocation of lens.\\n1. Ectopia lentis in inferonasal direction.\\nCauses:\\n2. Angle anomaly leading to glaucoma or pupil\\n1. Congenital—(a) Simple ectopia lentis block glaucoma due to incarceration of lens\\n(Symmetrical and upwards) (b) Ectopia in the pupil.\\nlentis et pupillae (slit shaped pupil displaced\\n3. Loss of accommodation due to disintegration\\nin opposite direction) (c) Ectopia lentis with\\nof zonules.\\nsystemic anomalies (Marfan’s syndrome,\\nHomocystinuria, Weil-Marchesani syndrome Ehlers-Danlos Syndrome\\nand Ehlers-Danlos syndrome).\\n1. Blue sclera.\\n2. Traumatic—Blunt trauma.\\n2. Ectopia lentis.\\n3. Consecutive or Spontaneous—Hyper-\\nmature cataract, Buphthalmos, High Congenital Anomalies of Lens\\nmyopia and Uveitis.\\nA. Colobomas:\\nMarfan’s Syndrome 1. Mostly occurs inferiorly.\\n2. May be associated with defect in iris\\n1. Megalocornea and Cornea plana.\\nand choroid.\\n2. Angle anomaly leading to glaucoma. {M}\\nB. Congenital Ectopia Lentis.\\n3. Upward/temporal ectopia lentis.\\nC. Lenticonus: It is the conical protrusion of\\n4. Difficulty in pupil dilatation. the lens.\\n5. Lattice degeneration and rhegmatogenous\\nAnterior Lenticonus:\\nretinal detachment.\\nAnterior lenticonus occurs in Alport’s\\nThe most PROMINENT manifestation of\\nSyndrome.\\nMarfan’s syndrome is Megalocornea.\\nAlport’s Syndrome (Familial haemorrhagic\\nThe most COMMON manifestation of\\nnephritis)\\nMarfan’s syndrome is Ectopia lentis.\\nSystemic Features:\\nWeil-Marchesani Syndrome 1. Renal failure.\\n1. Microspherophakia. 2. Hearing loss.\\n2. Pupillary block glaucoma. Ocular Features:\\n3. Ectopia lentis in inferior and forward 1. Posterior polymorphous corneal\\ndirection. dystrophy.14 Review of Ophthalmology\\n2. Juvenile arcus. E. Lentiglobus: It is a generalised hemis-\\npherical deformity of the lens. Posterior\\n3. Pigment dispersion.\\nlentiglobus is seen in Lowe’s syndrome.\\n4. Anterior lenticonus.\\nF. Microphakia: Lens is small in size. It is\\n5. Retinal pigmentary changes.\\nseen in Lowe’s syndrome.\\nPosterior Lenticonus: G. Microspherophakia: Small and spherical lens.\\nIt occurs in Lowe’s Syndrome–i.e., Oculo- Occurs in:\\ncerebrorenal syndrome. 1. Weil-Marchesani syndrome.\\nD. Congenital cataract. 2. Hyperlysinaemia.\\nNEET DRILL\\n1. The equatorial diameter of the lens is 15. Lens nucleus is divided as–embryonic\\n9–10 mm. nucleus–1-3 months of gestation/fetal\\nnucleus–3 months–birth/infantile nucleus-\\n2. The equatorial diameter of the lens at birth\\nbirth–puberty/adult nucleus–in adult life.\\nis 6.5 mm.\\n16. Lens is 66% water and 33% protein.\\n3. Thickness of the lens, i.e., the AP\\ndiameter is 3.5 mm–5 mm. 17. Antioxidative system of lens constitutes–\\nvitamin C, i.e., ascorbic acid, glutathione,\\n4. Radius of curvature of the anterior surface\\nmyoinositol that helps in ascorbic acid\\nis 10 mm.\\ncarrier system and detoxifying enzymes\\n5. Radius of curvature of the posterior\\nlike catalase and superoxide dismutase.\\nsurface is 6 mm.\\n18. Respiratory coefficient of the lens is: 1.\\n6. Refractive index of the lens is 1.39.\\n19. Microwave radiations can also cause\\n7. Refractive power is 16 D–17 D.\\ncataract, proved in animals and claimed\\n8. Accommodative power of the lens at birth: that there is maximum probability for\\n14–16 D at birth, 7–8 D at 25 years and humans also. It occurs in due to rise in\\n1–2 D at 50 years of age. temperature.\\n9. The pigments responsible for the color 20. Length of incision in phacoemulsification\\nchange in the process of development of is 2.75–3.2 mm.\\ncataract are urochrome and melanin. 21. Frequency of the phacoprobe is 40 khz.\\n10. Snowflake or snowstorm cataract is more 22. Most commonly used foldable IOL is\\ncommon in type 1 diabetes. acrylic.\\n11. Cataract in diabetes is due to sorbital 23. MICS, i.e., minimal incision cataract\\naccumulation in the lens and sorbital is surgery: incision is between 1.8 and 2.4 mm.\\nvery hyperosmotic.\\n24. Phaconit: Incision length is 0.9 mm.\\n12. Lens capsule is thinnest at posterior pole\\n25. Father of phaco: Charles D Kelman.\\nwith the thickness of 4 microns.\\n26. Causes of ectopia lentis: Marfan’s syndrome,\\n13. Lens capsule is thickest at equatorial\\nhomocystinuria, Weil-Marchesani, Ehlers-\\nregion and is 23 microns in thickness.\\nDanlos, sulphite oxidase deficiency,\\n14. Suspensory ligament or zonules have a hyperlysenemia, Refsum’s disease and\\ndiameter of 0.35–1 microns. Sturge-Weber syndrome.Diseases of Lens 15\\n27. Anterior lenticonus: Alport’s syndrome, 33. The genes responsible for congenital\\nWaardenburg syndrome. cataract: CRY, i.e., crystallines, Cx, i.e.,\\n28. Posterior lenticonus: Lowe’s syndrome. connexins and MIP, i.e., Major Intrinsic\\n29. Expulsive haemorrhage after cataract Protein.\\nsurgery occurs due to bleeding from the\\n34. The most recent in cataract surgery is\\nposterior ciliary arteries.\\nFemtolaser cataract surgery called LACS,\\n30. The size of opening of posterior capsulo- i.e., laser assisted cataract surgery.\\ntomy done by NdYAG laser ranges from\\n35. Femtolaser is an ultrafast laser, with pulse\\n2–3 mm to 5–6 mm.\\nduration in femtosecond, i.e., 10–15.\\n31. The insoluble proteins raised in a\\ncataractous lens are: HM3, HM4. 36. Minimum chance of after cataract is seen\\n32. In nuclear cataract, it is HM4. with Acrylic Hydrophobic IOLSs.\\n'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"json_file[chapter_names[0]]['C H A P T E R']['content']"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Error in Recent Advances. Error is 'content'\n"
]
}
],
"source": [
"for chapter in chapter_names:\n",
" try:\n",
" text = json_file[chapter]['C H A P T E R']['content']\n",
" except Exception as e:\n",
" print(f\"Error in {chapter}. Error is {e}\")\n",
" # print(type(text))\n",
" with open(f\"data/book/{chapter}\", \"w+\") as f:\n",
" f.write(text.replace(\"\\n\", \" \"))"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from demo_rag_gpt_4 import api_call"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"question = \"Transport of ascorbic acid to lens is done by:\\nA. Myoinositol\\nB. Choline\\nC. Taurine\\nD. Na/K ATPase\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"ename": "TypeError",
"evalue": "api_call() got an unexpected keyword argument 'service'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m/Users/aakashbhatnagar/Documents/masters/ophthal_llm/temp.ipynb Cell 23\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> <a href='vscode-notebook-cell:/Users/aakashbhatnagar/Documents/masters/ophthal_llm/temp.ipynb#X31sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m answer \u001b[39m=\u001b[39m api_call(\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/aakashbhatnagar/Documents/masters/ophthal_llm/temp.ipynb#X31sZmlsZQ%3D%3D?line=1'>2</a>\u001b[0m input_data\u001b[39m=\u001b[39;49mquestion,\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/aakashbhatnagar/Documents/masters/ophthal_llm/temp.ipynb#X31sZmlsZQ%3D%3D?line=2'>3</a>\u001b[0m service \u001b[39m=\u001b[39;49m \u001b[39m\"\u001b[39;49m\u001b[39mopenai\u001b[39;49m\u001b[39m\"\u001b[39;49m,\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/aakashbhatnagar/Documents/masters/ophthal_llm/temp.ipynb#X31sZmlsZQ%3D%3D?line=3'>4</a>\u001b[0m top_k\u001b[39m=\u001b[39;49m\u001b[39m20\u001b[39;49m,\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/aakashbhatnagar/Documents/masters/ophthal_llm/temp.ipynb#X31sZmlsZQ%3D%3D?line=4'>5</a>\u001b[0m prompt_file\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39m/projectnb/ds549/students/aakash07/DrVai/prompts/version_1.txt\u001b[39;49m\u001b[39m\"\u001b[39;49m,\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/aakashbhatnagar/Documents/masters/ophthal_llm/temp.ipynb#X31sZmlsZQ%3D%3D?line=5'>6</a>\u001b[0m )\n",
"\u001b[0;31mTypeError\u001b[0m: api_call() got an unexpected keyword argument 'service'"
]
}
],
"source": [
"answer = api_call(\n",
" input_data=question,\n",
" service = \"openai\",\n",
" top_k=20,\n",
" prompt_file=\"/projectnb/ds549/students/aakash07/DrVai/prompts/version_1.txt\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Answer for the question is A.\n",
"\n",
"Explanation: According to the documents, myoinositol participates in ascorbic acid transport in the lens.\n",
"\n",
"Documents used for reference are\n",
"\n",
"Document: 1.\n",
". Its levels are markedly CATARACT reduced in cataract. It is a precursor of membrane phosphoinositides which are Etiology involved in Na/Ka ATPase function. It also participates in ascorbic acid transport in a. Heredity: Usually dominant. the lens. b. Maternal factors: Lens 1. Malnutrition\n",
"\n",
"Document: 2.\n",
". 3. Thickness of the lens, i.e., the AP diameter is 3.5 mm–5 mm. 17. Antioxidative system of lens constitutes– vitamin C, i.e., ascorbic acid, glutathione, 4. Radius of curvature of the anterior surface myoinositol that helps in ascorbic acid is 10 mm. carrier system and detoxifying enzymes 5\n"
]
}
],
"source": [
"print(answer)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"import json"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"ans = json.loads(answer)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"l = ans[\"Doc_no\"].replace(\" \",\"\").split(\",\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"l = [int(i) for i in l]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"question = \"Transport of ascorbic acid to lens is done by:\\nA. Myoinositol\\nB. Choline\\nC. Taurine\\nD. Na/K ATPase\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Transport of ascorbic acid to lens is done by:\n",
"A. Myoinositol\n",
"B. Choline\n",
"C. Taurine\n",
"D. Na/K ATPase\n"
]
}
],
"source": [
"print(question)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"ename": "AuthenticationError",
"evalue": "Incorrect API key provided: sk-PzTV1***************************************uuhw. You can find your API key at https://platform.openai.com/account/api-keys.",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAuthenticationError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m/Users/aakashbhatnagar/Documents/masters/ophthal_llm/temp.ipynb Cell 31\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> <a href='vscode-notebook-cell:/Users/aakashbhatnagar/Documents/masters/ophthal_llm/temp.ipynb#X42sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m answer \u001b[39m=\u001b[39m api_call(\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/aakashbhatnagar/Documents/masters/ophthal_llm/temp.ipynb#X42sZmlsZQ%3D%3D?line=1'>2</a>\u001b[0m input_data\u001b[39m=\u001b[39;49mquestion,history\u001b[39m=\u001b[39;49m{})\n",
"File \u001b[0;32m~/Documents/masters/ophthal_llm/demo_rag_gpt_4.py:69\u001b[0m, in \u001b[0;36mapi_call\u001b[0;34m(input_data, history)\u001b[0m\n\u001b[1;32m 66\u001b[0m llm \u001b[39m=\u001b[39m ChatOpenAI(openai_api_key\u001b[39m=\u001b[39mos\u001b[39m.\u001b[39mgetenv(\u001b[39m\"\u001b[39m\u001b[39mOPENAI_API_KEY\u001b[39m\u001b[39m\"\u001b[39m), model\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mgpt-4\u001b[39m\u001b[39m\"\u001b[39m, temperature\u001b[39m=\u001b[39m\u001b[39m0.9\u001b[39m)\n\u001b[1;32m 68\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m---> 69\u001b[0m output \u001b[39m=\u001b[39m llm(complete_prompt)\u001b[39m.\u001b[39mcontent\n\u001b[1;32m 70\u001b[0m \u001b[39mexcept\u001b[39;00m ApiException \u001b[39mas\u001b[39;00m e:\n\u001b[1;32m 71\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mAPI Error: \u001b[39m\u001b[39m{\u001b[39;00me\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n",
"File \u001b[0;32m~/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/langchain/chat_models/base.py:600\u001b[0m, in \u001b[0;36mBaseChatModel.__call__\u001b[0;34m(self, messages, stop, callbacks, **kwargs)\u001b[0m\n\u001b[1;32m 593\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__call__\u001b[39m(\n\u001b[1;32m 594\u001b[0m \u001b[39mself\u001b[39m,\n\u001b[1;32m 595\u001b[0m messages: List[BaseMessage],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 598\u001b[0m \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs: Any,\n\u001b[1;32m 599\u001b[0m ) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m BaseMessage:\n\u001b[0;32m--> 600\u001b[0m generation \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mgenerate(\n\u001b[1;32m 601\u001b[0m [messages], stop\u001b[39m=\u001b[39;49mstop, callbacks\u001b[39m=\u001b[39;49mcallbacks, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs\n\u001b[1;32m 602\u001b[0m )\u001b[39m.\u001b[39mgenerations[\u001b[39m0\u001b[39m][\u001b[39m0\u001b[39m]\n\u001b[1;32m 603\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(generation, ChatGeneration):\n\u001b[1;32m 604\u001b[0m \u001b[39mreturn\u001b[39;00m generation\u001b[39m.\u001b[39mmessage\n",
"File \u001b[0;32m~/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/langchain/chat_models/base.py:349\u001b[0m, in \u001b[0;36mBaseChatModel.generate\u001b[0;34m(self, messages, stop, callbacks, tags, metadata, run_name, **kwargs)\u001b[0m\n\u001b[1;32m 347\u001b[0m \u001b[39mif\u001b[39;00m run_managers:\n\u001b[1;32m 348\u001b[0m run_managers[i]\u001b[39m.\u001b[39mon_llm_error(e)\n\u001b[0;32m--> 349\u001b[0m \u001b[39mraise\u001b[39;00m e\n\u001b[1;32m 350\u001b[0m flattened_outputs \u001b[39m=\u001b[39m [\n\u001b[1;32m 351\u001b[0m LLMResult(generations\u001b[39m=\u001b[39m[res\u001b[39m.\u001b[39mgenerations], llm_output\u001b[39m=\u001b[39mres\u001b[39m.\u001b[39mllm_output)\n\u001b[1;32m 352\u001b[0m \u001b[39mfor\u001b[39;00m res \u001b[39min\u001b[39;00m results\n\u001b[1;32m 353\u001b[0m ]\n\u001b[1;32m 354\u001b[0m llm_output \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_combine_llm_outputs([res\u001b[39m.\u001b[39mllm_output \u001b[39mfor\u001b[39;00m res \u001b[39min\u001b[39;00m results])\n",
"File \u001b[0;32m~/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/langchain/chat_models/base.py:339\u001b[0m, in \u001b[0;36mBaseChatModel.generate\u001b[0;34m(self, messages, stop, callbacks, tags, metadata, run_name, **kwargs)\u001b[0m\n\u001b[1;32m 336\u001b[0m \u001b[39mfor\u001b[39;00m i, m \u001b[39min\u001b[39;00m \u001b[39menumerate\u001b[39m(messages):\n\u001b[1;32m 337\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m 338\u001b[0m results\u001b[39m.\u001b[39mappend(\n\u001b[0;32m--> 339\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_generate_with_cache(\n\u001b[1;32m 340\u001b[0m m,\n\u001b[1;32m 341\u001b[0m stop\u001b[39m=\u001b[39;49mstop,\n\u001b[1;32m 342\u001b[0m run_manager\u001b[39m=\u001b[39;49mrun_managers[i] \u001b[39mif\u001b[39;49;00m run_managers \u001b[39melse\u001b[39;49;00m \u001b[39mNone\u001b[39;49;00m,\n\u001b[1;32m 343\u001b[0m \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs,\n\u001b[1;32m 344\u001b[0m )\n\u001b[1;32m 345\u001b[0m )\n\u001b[1;32m 346\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mBaseException\u001b[39;00m \u001b[39mas\u001b[39;00m e:\n\u001b[1;32m 347\u001b[0m \u001b[39mif\u001b[39;00m run_managers:\n",
"File \u001b[0;32m~/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/langchain/chat_models/base.py:492\u001b[0m, in \u001b[0;36mBaseChatModel._generate_with_cache\u001b[0;34m(self, messages, stop, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 488\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 489\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mAsked to cache, but no cache found at `langchain.cache`.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 490\u001b[0m )\n\u001b[1;32m 491\u001b[0m \u001b[39mif\u001b[39;00m new_arg_supported:\n\u001b[0;32m--> 492\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_generate(\n\u001b[1;32m 493\u001b[0m messages, stop\u001b[39m=\u001b[39;49mstop, run_manager\u001b[39m=\u001b[39;49mrun_manager, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs\n\u001b[1;32m 494\u001b[0m )\n\u001b[1;32m 495\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 496\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_generate(messages, stop\u001b[39m=\u001b[39mstop, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n",
"File \u001b[0;32m~/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/langchain/chat_models/openai.py:360\u001b[0m, in \u001b[0;36mChatOpenAI._generate\u001b[0;34m(self, messages, stop, run_manager, stream, **kwargs)\u001b[0m\n\u001b[1;32m 358\u001b[0m message_dicts, params \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_create_message_dicts(messages, stop)\n\u001b[1;32m 359\u001b[0m params \u001b[39m=\u001b[39m {\u001b[39m*\u001b[39m\u001b[39m*\u001b[39mparams, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs}\n\u001b[0;32m--> 360\u001b[0m response \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mcompletion_with_retry(\n\u001b[1;32m 361\u001b[0m messages\u001b[39m=\u001b[39;49mmessage_dicts, run_manager\u001b[39m=\u001b[39;49mrun_manager, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mparams\n\u001b[1;32m 362\u001b[0m )\n\u001b[1;32m 363\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_create_chat_result(response)\n",
"File \u001b[0;32m~/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/langchain/chat_models/openai.py:299\u001b[0m, in \u001b[0;36mChatOpenAI.completion_with_retry\u001b[0;34m(self, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 295\u001b[0m \u001b[39m@retry_decorator\u001b[39m\n\u001b[1;32m 296\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_completion_with_retry\u001b[39m(\u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs: Any) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m Any:\n\u001b[1;32m 297\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mclient\u001b[39m.\u001b[39mcreate(\u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[0;32m--> 299\u001b[0m \u001b[39mreturn\u001b[39;00m _completion_with_retry(\u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
"File \u001b[0;32m~/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/tenacity/__init__.py:289\u001b[0m, in \u001b[0;36mBaseRetrying.wraps.<locals>.wrapped_f\u001b[0;34m(*args, **kw)\u001b[0m\n\u001b[1;32m 287\u001b[0m \u001b[39m@functools\u001b[39m\u001b[39m.\u001b[39mwraps(f)\n\u001b[1;32m 288\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mwrapped_f\u001b[39m(\u001b[39m*\u001b[39margs: t\u001b[39m.\u001b[39mAny, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkw: t\u001b[39m.\u001b[39mAny) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m t\u001b[39m.\u001b[39mAny:\n\u001b[0;32m--> 289\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m(f, \u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkw)\n",
"File \u001b[0;32m~/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/tenacity/__init__.py:379\u001b[0m, in \u001b[0;36mRetrying.__call__\u001b[0;34m(self, fn, *args, **kwargs)\u001b[0m\n\u001b[1;32m 377\u001b[0m retry_state \u001b[39m=\u001b[39m RetryCallState(retry_object\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m, fn\u001b[39m=\u001b[39mfn, args\u001b[39m=\u001b[39margs, kwargs\u001b[39m=\u001b[39mkwargs)\n\u001b[1;32m 378\u001b[0m \u001b[39mwhile\u001b[39;00m \u001b[39mTrue\u001b[39;00m:\n\u001b[0;32m--> 379\u001b[0m do \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49miter(retry_state\u001b[39m=\u001b[39;49mretry_state)\n\u001b[1;32m 380\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(do, DoAttempt):\n\u001b[1;32m 381\u001b[0m \u001b[39mtry\u001b[39;00m:\n",
"File \u001b[0;32m~/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/tenacity/__init__.py:314\u001b[0m, in \u001b[0;36mBaseRetrying.iter\u001b[0;34m(self, retry_state)\u001b[0m\n\u001b[1;32m 312\u001b[0m is_explicit_retry \u001b[39m=\u001b[39m fut\u001b[39m.\u001b[39mfailed \u001b[39mand\u001b[39;00m \u001b[39misinstance\u001b[39m(fut\u001b[39m.\u001b[39mexception(), TryAgain)\n\u001b[1;32m 313\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m (is_explicit_retry \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mretry(retry_state)):\n\u001b[0;32m--> 314\u001b[0m \u001b[39mreturn\u001b[39;00m fut\u001b[39m.\u001b[39;49mresult()\n\u001b[1;32m 316\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mafter \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 317\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mafter(retry_state)\n",
"File \u001b[0;32m~/miniconda3/lib/python3.10/concurrent/futures/_base.py:451\u001b[0m, in \u001b[0;36mFuture.result\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 449\u001b[0m \u001b[39mraise\u001b[39;00m CancelledError()\n\u001b[1;32m 450\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_state \u001b[39m==\u001b[39m FINISHED:\n\u001b[0;32m--> 451\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m__get_result()\n\u001b[1;32m 453\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_condition\u001b[39m.\u001b[39mwait(timeout)\n\u001b[1;32m 455\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_state \u001b[39min\u001b[39;00m [CANCELLED, CANCELLED_AND_NOTIFIED]:\n",
"File \u001b[0;32m~/miniconda3/lib/python3.10/concurrent/futures/_base.py:403\u001b[0m, in \u001b[0;36mFuture.__get_result\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 401\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_exception:\n\u001b[1;32m 402\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 403\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_exception\n\u001b[1;32m 404\u001b[0m \u001b[39mfinally\u001b[39;00m:\n\u001b[1;32m 405\u001b[0m \u001b[39m# Break a reference cycle with the exception in self._exception\u001b[39;00m\n\u001b[1;32m 406\u001b[0m \u001b[39mself\u001b[39m \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n",
"File \u001b[0;32m~/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/tenacity/__init__.py:382\u001b[0m, in \u001b[0;36mRetrying.__call__\u001b[0;34m(self, fn, *args, **kwargs)\u001b[0m\n\u001b[1;32m 380\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(do, DoAttempt):\n\u001b[1;32m 381\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 382\u001b[0m result \u001b[39m=\u001b[39m fn(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 383\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mBaseException\u001b[39;00m: \u001b[39m# noqa: B902\u001b[39;00m\n\u001b[1;32m 384\u001b[0m retry_state\u001b[39m.\u001b[39mset_exception(sys\u001b[39m.\u001b[39mexc_info()) \u001b[39m# type: ignore[arg-type]\u001b[39;00m\n",
"File \u001b[0;32m~/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/langchain/chat_models/openai.py:297\u001b[0m, in \u001b[0;36mChatOpenAI.completion_with_retry.<locals>._completion_with_retry\u001b[0;34m(**kwargs)\u001b[0m\n\u001b[1;32m 295\u001b[0m \u001b[39m@retry_decorator\u001b[39m\n\u001b[1;32m 296\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_completion_with_retry\u001b[39m(\u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs: Any) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m Any:\n\u001b[0;32m--> 297\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mclient\u001b[39m.\u001b[39;49mcreate(\u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
"File \u001b[0;32m~/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/openai/api_resources/chat_completion.py:25\u001b[0m, in \u001b[0;36mChatCompletion.create\u001b[0;34m(cls, *args, **kwargs)\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[39mwhile\u001b[39;00m \u001b[39mTrue\u001b[39;00m:\n\u001b[1;32m 24\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m---> 25\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39msuper\u001b[39;49m()\u001b[39m.\u001b[39;49mcreate(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 26\u001b[0m \u001b[39mexcept\u001b[39;00m TryAgain \u001b[39mas\u001b[39;00m e:\n\u001b[1;32m 27\u001b[0m \u001b[39mif\u001b[39;00m timeout \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39mand\u001b[39;00m time\u001b[39m.\u001b[39mtime() \u001b[39m>\u001b[39m start \u001b[39m+\u001b[39m timeout:\n",
"File \u001b[0;32m~/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/openai/api_resources/abstract/engine_api_resource.py:155\u001b[0m, in \u001b[0;36mEngineAPIResource.create\u001b[0;34m(cls, api_key, api_base, api_type, request_id, api_version, organization, **params)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[39m@classmethod\u001b[39m\n\u001b[1;32m 130\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mcreate\u001b[39m(\n\u001b[1;32m 131\u001b[0m \u001b[39mcls\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mparams,\n\u001b[1;32m 139\u001b[0m ):\n\u001b[1;32m 140\u001b[0m (\n\u001b[1;32m 141\u001b[0m deployment_id,\n\u001b[1;32m 142\u001b[0m engine,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 152\u001b[0m api_key, api_base, api_type, api_version, organization, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mparams\n\u001b[1;32m 153\u001b[0m )\n\u001b[0;32m--> 155\u001b[0m response, _, api_key \u001b[39m=\u001b[39m requestor\u001b[39m.\u001b[39;49mrequest(\n\u001b[1;32m 156\u001b[0m \u001b[39m\"\u001b[39;49m\u001b[39mpost\u001b[39;49m\u001b[39m\"\u001b[39;49m,\n\u001b[1;32m 157\u001b[0m url,\n\u001b[1;32m 158\u001b[0m params\u001b[39m=\u001b[39;49mparams,\n\u001b[1;32m 159\u001b[0m headers\u001b[39m=\u001b[39;49mheaders,\n\u001b[1;32m 160\u001b[0m stream\u001b[39m=\u001b[39;49mstream,\n\u001b[1;32m 161\u001b[0m request_id\u001b[39m=\u001b[39;49mrequest_id,\n\u001b[1;32m 162\u001b[0m request_timeout\u001b[39m=\u001b[39;49mrequest_timeout,\n\u001b[1;32m 163\u001b[0m )\n\u001b[1;32m 165\u001b[0m \u001b[39mif\u001b[39;00m stream:\n\u001b[1;32m 166\u001b[0m \u001b[39m# must be an iterator\u001b[39;00m\n\u001b[1;32m 167\u001b[0m \u001b[39massert\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39misinstance\u001b[39m(response, OpenAIResponse)\n",
"File \u001b[0;32m~/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/openai/api_requestor.py:299\u001b[0m, in \u001b[0;36mAPIRequestor.request\u001b[0;34m(self, method, url, params, headers, files, stream, request_id, request_timeout)\u001b[0m\n\u001b[1;32m 278\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mrequest\u001b[39m(\n\u001b[1;32m 279\u001b[0m \u001b[39mself\u001b[39m,\n\u001b[1;32m 280\u001b[0m method,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 287\u001b[0m request_timeout: Optional[Union[\u001b[39mfloat\u001b[39m, Tuple[\u001b[39mfloat\u001b[39m, \u001b[39mfloat\u001b[39m]]] \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m,\n\u001b[1;32m 288\u001b[0m ) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m Tuple[Union[OpenAIResponse, Iterator[OpenAIResponse]], \u001b[39mbool\u001b[39m, \u001b[39mstr\u001b[39m]:\n\u001b[1;32m 289\u001b[0m result \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mrequest_raw(\n\u001b[1;32m 290\u001b[0m method\u001b[39m.\u001b[39mlower(),\n\u001b[1;32m 291\u001b[0m url,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 297\u001b[0m request_timeout\u001b[39m=\u001b[39mrequest_timeout,\n\u001b[1;32m 298\u001b[0m )\n\u001b[0;32m--> 299\u001b[0m resp, got_stream \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_interpret_response(result, stream)\n\u001b[1;32m 300\u001b[0m \u001b[39mreturn\u001b[39;00m resp, got_stream, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mapi_key\n",
"File \u001b[0;32m~/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/openai/api_requestor.py:710\u001b[0m, in \u001b[0;36mAPIRequestor._interpret_response\u001b[0;34m(self, result, stream)\u001b[0m\n\u001b[1;32m 702\u001b[0m \u001b[39mreturn\u001b[39;00m (\n\u001b[1;32m 703\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_interpret_response_line(\n\u001b[1;32m 704\u001b[0m line, result\u001b[39m.\u001b[39mstatus_code, result\u001b[39m.\u001b[39mheaders, stream\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m\n\u001b[1;32m 705\u001b[0m )\n\u001b[1;32m 706\u001b[0m \u001b[39mfor\u001b[39;00m line \u001b[39min\u001b[39;00m parse_stream(result\u001b[39m.\u001b[39miter_lines())\n\u001b[1;32m 707\u001b[0m ), \u001b[39mTrue\u001b[39;00m\n\u001b[1;32m 708\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 709\u001b[0m \u001b[39mreturn\u001b[39;00m (\n\u001b[0;32m--> 710\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_interpret_response_line(\n\u001b[1;32m 711\u001b[0m result\u001b[39m.\u001b[39;49mcontent\u001b[39m.\u001b[39;49mdecode(\u001b[39m\"\u001b[39;49m\u001b[39mutf-8\u001b[39;49m\u001b[39m\"\u001b[39;49m),\n\u001b[1;32m 712\u001b[0m result\u001b[39m.\u001b[39;49mstatus_code,\n\u001b[1;32m 713\u001b[0m result\u001b[39m.\u001b[39;49mheaders,\n\u001b[1;32m 714\u001b[0m stream\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m,\n\u001b[1;32m 715\u001b[0m ),\n\u001b[1;32m 716\u001b[0m \u001b[39mFalse\u001b[39;00m,\n\u001b[1;32m 717\u001b[0m )\n",
"File \u001b[0;32m~/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/openai/api_requestor.py:775\u001b[0m, in \u001b[0;36mAPIRequestor._interpret_response_line\u001b[0;34m(self, rbody, rcode, rheaders, stream)\u001b[0m\n\u001b[1;32m 773\u001b[0m stream_error \u001b[39m=\u001b[39m stream \u001b[39mand\u001b[39;00m \u001b[39m\"\u001b[39m\u001b[39merror\u001b[39m\u001b[39m\"\u001b[39m \u001b[39min\u001b[39;00m resp\u001b[39m.\u001b[39mdata\n\u001b[1;32m 774\u001b[0m \u001b[39mif\u001b[39;00m stream_error \u001b[39mor\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39m200\u001b[39m \u001b[39m<\u001b[39m\u001b[39m=\u001b[39m rcode \u001b[39m<\u001b[39m \u001b[39m300\u001b[39m:\n\u001b[0;32m--> 775\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mhandle_error_response(\n\u001b[1;32m 776\u001b[0m rbody, rcode, resp\u001b[39m.\u001b[39mdata, rheaders, stream_error\u001b[39m=\u001b[39mstream_error\n\u001b[1;32m 777\u001b[0m )\n\u001b[1;32m 778\u001b[0m \u001b[39mreturn\u001b[39;00m resp\n",
"\u001b[0;31mAuthenticationError\u001b[0m: Incorrect API key provided: sk-PzTV1***************************************uuhw. You can find your API key at https://platform.openai.com/account/api-keys."
]
}
],
"source": [
"answer = api_call(\n",
" input_data=question,history={})"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Answer for the question is A.\n",
"\n",
"Explanation: The transport of ascorbic acid to the lens is done by myoinositol. Myoinositol participates in ascorbic acid transport in the lens and is actively transported into the lens by a sodium-dependent carrier-mediated mechanism.\n",
"\n",
"Documents used for reference are\n",
"\n",
"Document: 1.\n",
". Its levels are markedly CATARACT reduced in cataract. It is a precursor of membrane phosphoinositides which are Etiology involved in Na/Ka ATPase function. It also participates in ascorbic acid transport in a. Heredity: Usually dominant. the lens. b. Maternal factors: Lens 1. Malnutrition\n",
"\n",
"Document: 2.\n",
". 3. Thickness of the lens, i.e., the AP diameter is 3.5 mm–5 mm. 17. Antioxidative system of lens constitutes– vitamin C, i.e., ascorbic acid, glutathione, 4. Radius of curvature of the anterior surface myoinositol that helps in ascorbic acid is 10 mm. carrier system and detoxifying enzymes 5\n",
"\n",
"Document: 4.\n",
". Anterior and Posterior. Its levels are reduced in patients of cataract. Most common cause of acquired cataract is senile cataract. Myoinositol is actively transported into the lens by sodium dependent carrier mediated CONGENITAL AND DEVELOPMENTAL mechanism\n"
]
}
],
"source": [
"print(answer)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"pred_rag = np.load(\"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/data/answer_pred_list_rag.npy\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"pred_rag = [i.lower() for i in pred_rag]\n",
"# pred_rag = [None for i in pred_rag if len(i) == 0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"binary_value = []\n",
"for i in range(len(pred_rag[:94])):\n",
" true_list = "
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['a',\n",
" 'a',\n",
" 'a',\n",
" '',\n",
" '',\n",
" 'd',\n",
" '',\n",
" 'a',\n",
" 'c',\n",
" '',\n",
" 'c',\n",
" 'b',\n",
" 'a',\n",
" '',\n",
" '',\n",
" 'c',\n",
" 'b',\n",
" 'a',\n",
" 'b',\n",
" 'c',\n",
" 'd',\n",
" 'c',\n",
" 'b',\n",
" 'a',\n",
" 'c',\n",
" 'b',\n",
" 'd',\n",
" '',\n",
" 'b',\n",
" 'a',\n",
" 'b',\n",
" 'a',\n",
" 'a',\n",
" 'a, b',\n",
" 'a',\n",
" '',\n",
" 'e',\n",
" 'b',\n",
" 'd',\n",
" 'a, b, c, d, e',\n",
" 'b',\n",
" '',\n",
" 'c',\n",
" '',\n",
" '',\n",
" '',\n",
" 'b',\n",
" 'a',\n",
" 'a',\n",
" 'a',\n",
" 'a',\n",
" 'a',\n",
" 'a, d',\n",
" 'd',\n",
" 'd',\n",
" 'a',\n",
" 'd',\n",
" 'c',\n",
" '',\n",
" 'd',\n",
" '',\n",
" '',\n",
" 'c',\n",
" '',\n",
" 'b',\n",
" '',\n",
" 'c',\n",
" 'd',\n",
" 'd',\n",
" 'a',\n",
" 'd',\n",
" 'a',\n",
" 'b',\n",
" 'd',\n",
" 'c',\n",
" '',\n",
" '',\n",
" 'a',\n",
" 'b',\n",
" 'd',\n",
" 'd',\n",
" '',\n",
" 'b',\n",
" 'd',\n",
" '',\n",
" 'c',\n",
" 'c',\n",
" 'b',\n",
" 'b',\n",
" '',\n",
" 'a',\n",
" '',\n",
" '',\n",
" '',\n",
" 'a',\n",
" '',\n",
" 'b',\n",
" 'c',\n",
" 'a',\n",
" '',\n",
" 'c',\n",
" '',\n",
" '',\n",
" 'd',\n",
" 'b',\n",
" '']"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pred_rag"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import classification_report\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"true_csv = pd.read_csv(\"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/data/chapter_1_mcq_true.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"true_ans = true_csv[\"answer\"].tolist()"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"binary_value = []\n",
"binary_true = []\n",
"for i in range(len(pred_rag[:94])):\n",
" true_list = true_ans[i].replace(\" \", \"\").split(\",\")\n",
" if pred_rag[i] in true_list:\n",
" binary_value.append(1)\n",
" else:\n",
" binary_value.append(0)\n",
" \n",
" binary_true.append(1)"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"('a', 'a')\n",
"('a', 'a')\n",
"('a', 'b')\n",
"('', 'b')\n",
"('', 'a')\n",
"('d', 'c')\n",
"('', 'a')\n",
"('a', 'b')\n",
"('c', 'b')\n",
"('', 'c')\n",
"('c', 'b')\n",
"('b', 'a')\n",
"('a', 'a')\n",
"('', 'c')\n",
"('', 'c')\n",
"('c', 'b')\n",
"('b', 'a')\n",
"('a', 'a')\n",
"('b', 'c')\n",
"('c', 'a')\n",
"('d', 'b')\n",
"('c', 'b')\n",
"('b', 'c')\n",
"('a', 'c')\n",
"('c', 'd')\n",
"('b', 'd')\n",
"('d', 'a')\n",
"('', 'b')\n",
"('b', 'c')\n",
"('a', 'b')\n",
"('b', 'b')\n",
"('a', 'a')\n",
"('a', 'b')\n",
"('a, b', 'a')\n",
"('a', 'b')\n",
"('', 'a')\n",
"('e', 'a')\n",
"('b', 'c')\n",
"('d', 'c')\n",
"('a, b, c, d, e', 'a')\n",
"('b', 'a')\n",
"('', 'a')\n",
"('c', 'a')\n",
"('', 'a')\n",
"('', 'd')\n",
"('', 'd')\n",
"('b', 'b')\n",
"('a', 'c')\n",
"('a', 'd')\n",
"('a', 'd')\n",
"('a', 'a')\n",
"('a', 'b')\n",
"('a, d', 'c')\n",
"('d', 'a')\n",
"('d', 'b')\n",
"('a', 'b')\n",
"('d', 'a')\n",
"('c', 'd')\n",
"('', 'd')\n",
"('d', 'a')\n",
"('', 'd')\n",
"('', 'a')\n",
"('c', 'b')\n",
"('', 'b')\n",
"('b', 'c')\n",
"('', 'b')\n",
"('c', 'a')\n",
"('d', 'b')\n",
"('d', 'd')\n",
"('a', 'b')\n",
"('d', 'b')\n",
"('a', 'b')\n",
"('b', 'd')\n",
"('d', 'a')\n",
"('c', 'a')\n",
"('', 'c')\n",
"('', 'd')\n",
"('a', 'b')\n",
"('b', 'a')\n",
"('d', 'a')\n",
"('d', 'a')\n",
"('', 'b')\n",
"('b', 'a')\n",
"('d', 'c')\n",
"('', 'b')\n",
"('c', 'c')\n",
"('c', 'd')\n",
"('b', 'd')\n",
"('b', 'c')\n",
"('', 'a')\n",
"('a', 'b')\n",
"('', 'd')\n",
"('', 'b')\n",
"('', 'a')\n"
]
}
],
"source": [
"for i in zip(pred_rag[:94], true_ans):\n",
" print(i)"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['a',\n",
" 'a',\n",
" 'a',\n",
" '',\n",
" '',\n",
" 'd',\n",
" '',\n",
" 'a',\n",
" 'c',\n",
" '',\n",
" 'c',\n",
" 'b',\n",
" 'a',\n",
" '',\n",
" '',\n",
" 'c',\n",
" 'b',\n",
" 'a',\n",
" 'b',\n",
" 'c',\n",
" 'd',\n",
" 'c',\n",
" 'b',\n",
" 'a',\n",
" 'c',\n",
" 'b',\n",
" 'd',\n",
" '',\n",
" 'b',\n",
" 'a',\n",
" 'b',\n",
" 'a',\n",
" 'a',\n",
" 'a, b',\n",
" 'a',\n",
" '',\n",
" 'e',\n",
" 'b',\n",
" 'd',\n",
" 'a, b, c, d, e',\n",
" 'b',\n",
" '',\n",
" 'c',\n",
" '',\n",
" '',\n",
" '',\n",
" 'b',\n",
" 'a',\n",
" 'a',\n",
" 'a',\n",
" 'a',\n",
" 'a',\n",
" 'a, d',\n",
" 'd',\n",
" 'd',\n",
" 'a',\n",
" 'd',\n",
" 'c',\n",
" '',\n",
" 'd',\n",
" '',\n",
" '',\n",
" 'c',\n",
" '',\n",
" 'b',\n",
" '',\n",
" 'c',\n",
" 'd',\n",
" 'd',\n",
" 'a',\n",
" 'd',\n",
" 'a',\n",
" 'b',\n",
" 'd',\n",
" 'c',\n",
" '',\n",
" '',\n",
" 'a',\n",
" 'b',\n",
" 'd',\n",
" 'd',\n",
" '',\n",
" 'b',\n",
" 'd',\n",
" '',\n",
" 'c',\n",
" 'c',\n",
" 'b',\n",
" 'b',\n",
" '',\n",
" 'a',\n",
" '',\n",
" '',\n",
" '',\n",
" 'a',\n",
" '',\n",
" 'b',\n",
" 'c',\n",
" 'a',\n",
" '',\n",
" 'c',\n",
" '',\n",
" '',\n",
" 'd',\n",
" 'b',\n",
" '']"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pred_rag"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" precision recall f1-score support\n",
"\n",
" 0 0.00 0.00 0.00 0\n",
" 1 1.00 0.11 0.19 94\n",
"\n",
" accuracy 0.11 94\n",
" macro avg 0.50 0.05 0.10 94\n",
"weighted avg 1.00 0.11 0.19 94\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, msg_start, len(result))\n",
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, msg_start, len(result))\n",
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, msg_start, len(result))\n"
]
}
],
"source": [
"print(classification_report(binary_true, binary_value))"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/pinecone/index.py:4: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from tqdm.autonotebook import tqdm\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading model\n",
"\n",
"\n",
"Models downloaded\n",
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"Could not create share link. Please check your internet connection or our status page: https://status.gradio.app.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023/11/02 10:43:28 [W] [service.go:132] login to server failed: EOF\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from demo_rag_gpt_4 import api_call\n",
"\n",
"import gradio as gr\n",
"\n",
"# answer = api_call(\n",
"# input_data=question,\n",
"# service = \"openai\",\n",
"# top_k=20,\n",
"# prompt_file=\"/projectnb/ds549/students/aakash07/DrVai/prompts/version_1.txt\",\n",
"# )\n",
"\n",
"gr.ChatInterface(api_call).launch(share=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
">>> from datasets import load_dataset\n",
">>> dataset = load_dataset('squad', split='train')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<OpenAIObject list at 0x109c43fb0> JSON: {\n",
" \"object\": \"list\",\n",
" \"data\": [\n",
" {\n",
" \"id\": \"text-search-babbage-doc-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172509,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"gpt-3.5-turbo-16k-0613\",\n",
" \"object\": \"model\",\n",
" \"created\": 1685474247,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"curie-search-query\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172509,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"gpt-3.5-turbo-16k\",\n",
" \"object\": \"model\",\n",
" \"created\": 1683758102,\n",
" \"owned_by\": \"openai-internal\"\n",
" },\n",
" {\n",
" \"id\": \"text-search-babbage-query-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172509,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"babbage\",\n",
" \"object\": \"model\",\n",
" \"created\": 1649358449,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"babbage-search-query\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172509,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"text-babbage-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1649364043,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"whisper-1\",\n",
" \"object\": \"model\",\n",
" \"created\": 1677532384,\n",
" \"owned_by\": \"openai-internal\"\n",
" },\n",
" {\n",
" \"id\": \"text-similarity-davinci-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172505,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"davinci-similarity\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172509,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"code-davinci-edit-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1649880484,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"curie-similarity\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172510,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"babbage-search-document\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172510,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"curie-instruct-beta\",\n",
" \"object\": \"model\",\n",
" \"created\": 1649364042,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"text-search-ada-doc-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172507,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"davinci-instruct-beta\",\n",
" \"object\": \"model\",\n",
" \"created\": 1649364042,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"gpt-4\",\n",
" \"object\": \"model\",\n",
" \"created\": 1687882411,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"text-similarity-babbage-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172505,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"text-search-davinci-doc-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172505,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"babbage-similarity\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172505,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"text-embedding-ada-002\",\n",
" \"object\": \"model\",\n",
" \"created\": 1671217299,\n",
" \"owned_by\": \"openai-internal\"\n",
" },\n",
" {\n",
" \"id\": \"davinci-search-query\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172505,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"text-similarity-curie-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172507,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"text-davinci-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1649364042,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"text-search-davinci-query-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172505,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"ada-search-document\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172507,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"ada-code-search-code\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172505,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"babbage-002\",\n",
" \"object\": \"model\",\n",
" \"created\": 1692634615,\n",
" \"owned_by\": \"system\"\n",
" },\n",
" {\n",
" \"id\": \"davinci-002\",\n",
" \"object\": \"model\",\n",
" \"created\": 1692634301,\n",
" \"owned_by\": \"system\"\n",
" },\n",
" {\n",
" \"id\": \"davinci-search-document\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172509,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"curie-search-document\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172508,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"babbage-code-search-code\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172509,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"text-search-ada-query-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172505,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"code-search-ada-text-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172507,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"babbage-code-search-text\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172509,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"code-search-babbage-code-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172507,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"ada-search-query\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172505,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"ada-code-search-text\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172510,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"text-search-curie-query-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172509,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"text-davinci-002\",\n",
" \"object\": \"model\",\n",
" \"created\": 1649880484,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"text-davinci-edit-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1649809179,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"code-search-babbage-text-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172507,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"gpt-3.5-turbo\",\n",
" \"object\": \"model\",\n",
" \"created\": 1677610602,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"gpt-3.5-turbo-instruct-0914\",\n",
" \"object\": \"model\",\n",
" \"created\": 1694122472,\n",
" \"owned_by\": \"system\"\n",
" },\n",
" {\n",
" \"id\": \"ada\",\n",
" \"object\": \"model\",\n",
" \"created\": 1649357491,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"text-ada-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1649364042,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"ada-similarity\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172507,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"code-search-ada-code-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172507,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"text-similarity-ada-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172505,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"gpt-3.5-turbo-0301\",\n",
" \"object\": \"model\",\n",
" \"created\": 1677649963,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"gpt-3.5-turbo-instruct\",\n",
" \"object\": \"model\",\n",
" \"created\": 1692901427,\n",
" \"owned_by\": \"system\"\n",
" },\n",
" {\n",
" \"id\": \"text-search-curie-doc-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1651172509,\n",
" \"owned_by\": \"openai-dev\"\n",
" },\n",
" {\n",
" \"id\": \"text-davinci-003\",\n",
" \"object\": \"model\",\n",
" \"created\": 1669599635,\n",
" \"owned_by\": \"openai-internal\"\n",
" },\n",
" {\n",
" \"id\": \"gpt-4-0613\",\n",
" \"object\": \"model\",\n",
" \"created\": 1686588896,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"text-curie-001\",\n",
" \"object\": \"model\",\n",
" \"created\": 1649364043,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"curie\",\n",
" \"object\": \"model\",\n",
" \"created\": 1649359874,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"gpt-4-0314\",\n",
" \"object\": \"model\",\n",
" \"created\": 1687882410,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"davinci\",\n",
" \"object\": \"model\",\n",
" \"created\": 1649359874,\n",
" \"owned_by\": \"openai\"\n",
" },\n",
" {\n",
" \"id\": \"dall-e-2\",\n",
" \"object\": \"model\",\n",
" \"created\": 1698798177,\n",
" \"owned_by\": \"system\"\n",
" },\n",
" {\n",
" \"id\": \"gpt-3.5-turbo-0613\",\n",
" \"object\": \"model\",\n",
" \"created\": 1686587434,\n",
" \"owned_by\": \"openai\"\n",
" }\n",
" ]\n",
"}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import os\n",
"import openai\n",
"openai.organization = \"org-0UQMhO1JHKnODDAGm43isRSP\"\n",
"openai.api_key = \"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\"\n",
"openai.Model.list()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"d = openai.Model.list()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"gpt-4\n"
]
}
],
"source": [
"for i in d['data']:\n",
" if i['id'] == 'gpt-4':\n",
" print(i['id'])"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'GB6Qr5nSr8uI70QxDJ2PT3BlbkFJTIfe5DGwsNfiiOHo3hyZ'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"os.environ[\"OPENAI_API_KEY\"]"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/pinecone/index.py:4: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from tqdm.autonotebook import tqdm\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading model\n",
"\n",
"\n",
"Models downloaded\n"
]
}
],
"source": [
"from demo_rag_gpt_4 import api_call\n",
"from tqdm import tqdm\n",
"import numpy as np\n",
"from langchain.prompts import PromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.messages import SystemMessage\n",
"import os\n",
"import json"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"prompt_file = \"prompts/version_1_wihtout_rag.txt\"\n",
"prompt = open(prompt_file).read()\n",
"\n",
" # Create Chat Template\n",
"\n",
"chat_template = ChatPromptTemplate.from_messages(\n",
"[\n",
" SystemMessage(\n",
" content=prompt, \n",
" ),\n",
" HumanMessagePromptTemplate.from_template(\"Answer the following question.\\n{question}\"),\n",
" # HumanMessagePromptTemplate.from_template(\"Answer this question. Give only the option followed by a brief explanation as output\\\\n{text}\"),\n",
"]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0.9, openai_organization=os.getenv(\"ORGANIZATION_KEY\"))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"question_list = np.load(\"data/medmcqa/question_list.npy\")\n",
"true = np.load(\"data/medmcqa/answer_list.npy\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 57%|█████▋ | 127/221 [19:04<17:53, 11.42s/it]Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised Timeout: Request timed out: HTTPSConnectionPool(host='api.openai.com', port=443): Read timed out. (read timeout=600).\n",
"100%|██████████| 221/221 [49:37<00:00, 13.47s/it] \n"
]
}
],
"source": [
"pred_list_without_rag = []\n",
"doc_list_without_rag = []\n",
"exception_list_without_rag = []\n",
"for question in tqdm(question_list[279:500]):\n",
" complete_prompt = chat_template.format_messages(question=question)\n",
" answer = llm(complete_prompt).content\n",
" try:\n",
" answer = json.loads(answer)\n",
" option = answer[\"option\"]\n",
" # doc = answer[\"doc_no\"]\n",
" pred_list_without_rag.append(option)\n",
" # doc_list_without_rag.append([int(i) for i in doc.split(',')])\n",
" except Exception as e:\n",
" print(e)\n",
" exception_list_without_rag.append([e, answer])"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'{\"option\": \"C\", \"explanation\": \"Central serous retinopathy generally does not cause sudden loss of vision. It typically presents with mild to moderate vision loss or distortion that develops slowly over time. On the other hand, Angle closure glaucoma, endophthalmitis, and corneal ulceration can all lead to a rapid onset of visual loss.\"}'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"arr_after_279 = np.array(pred_list_without_rag)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"np.save(\"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/prediction/wo_rag/medmcqa/arr_after_279.npy\", arr_after_279)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"arr_279 = np.array(pred_list_without_rag)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"np.save(\"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/prediction/wo_rag/medmcqa/arr_279.npy\", arr_279)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"# arr_1 = np.load(\"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/prediction/wo_rag/medmcqa/pred.npy\")\n",
"# arr_2= np.load(\"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/prediction/w_rag/medmcqa/array_131.npy\")"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"pred_list = np.load(\"prediction/wo_rag/medmcqa/pred.npy\")\n",
"true_list = np.load(\"data/medmcqa/answer_list.npy\")"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"map_list = {\"a\":0, \"b\": 1, \"c\": 2, \"d\": 3}\n",
"option_list = [\"a\", \"b\", \"c\", \"d\"]\n"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"pred_pross = []\n",
"for i in range(len(pred_list)):\n",
" pred = pred_list[i]\n",
" actual = true_list[i]\n",
" if pred.lower() in option_list:\n",
" p = map_list[pred.lower()]\n",
" if p == actual:\n",
" pred_pross.append(True)\n",
" else:\n",
" pred_pross.append(False)\n",
" else:\n",
" pred_pross.append(False)"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" False,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" False,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" False,\n",
" True,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" False,\n",
" False,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" False,\n",
" True,\n",
" False,\n",
" True,\n",
" True,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True,\n",
" False,\n",
" False,\n",
" False,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" True,\n",
" False,\n",
" True]"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pred_pross"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1,\n",
" 0,\n",
" 0,\n",
" 0,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 1,\n",
" 0,\n",
" 1]"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"actual"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
"actual = [1 for pred in pred_pross]"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import classification_report"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, msg_start, len(result))\n",
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, msg_start, len(result))\n",
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, msg_start, len(result))\n"
]
}
],
"source": [
"report = classification_report(actual, pred_pross)"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" precision recall f1-score support\n",
"\n",
" 0 0.00 0.00 0.00 0\n",
" 1 1.00 0.76 0.86 500\n",
"\n",
" accuracy 0.76 500\n",
" macro avg 0.50 0.38 0.43 500\n",
"weighted avg 1.00 0.76 0.86 500\n",
"\n"
]
}
],
"source": [
"print(report)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['A', 'C', 'C', 'A', 'B', 'A', 'B', 'D', 'A', 'C', 'A', 'A', 'C',\n",
" 'C', 'B', 'C', 'D', 'B', 'D', 'A', 'C', 'B', 'A', 'A', 'A', 'A',\n",
" 'A', 'C', 'C', 'D', 'C', 'C', 'D', 'C', 'C', 'B', 'D', 'A', 'B',\n",
" 'D', 'D', 'B', 'C', 'B', 'C', 'D', 'A', 'B', 'A', 'C', 'C', 'B',\n",
" 'A', 'D', 'A', 'B', 'B', 'B', 'D', 'C', 'C', 'B', 'A', 'B', 'C',\n",
" 'D', 'A', 'D', 'C', 'A', 'B', 'B', 'D', 'D', 'A', 'D', 'D', 'D',\n",
" 'B', 'A', 'D', 'C', 'B', 'D', 'C', 'A', 'A', 'D', 'D', 'A', 'A',\n",
" 'C', 'A', 'B', 'A', 'B', 'D', 'A', 'C', 'C', 'B', 'A', 'C', 'B',\n",
" 'D', 'B', 'A', 'C', 'B', 'C', 'C', 'C', 'B', 'A', 'D', 'C', 'B',\n",
" 'D', 'A', 'D', 'C', 'A', 'A', 'C', 'A', 'D', 'D', 'D', 'B', 'D',\n",
" 'D', 'A', 'A', 'D', 'C', 'C', 'B', 'D', 'D', 'A', 'A', 'A', 'C',\n",
" 'B', 'B', 'B', 'C', 'D', 'B', 'D', 'B', 'B', 'A', 'D', 'B', 'A',\n",
" 'B', 'D', 'B', 'C', 'B', 'C', 'A', 'C', 'B', 'A', 'D', 'A', 'C',\n",
" 'C', 'C', 'A', 'C', '', 'A', 'A', 'C', 'A', 'D', 'B', 'A', 'C',\n",
" 'C', 'C', 'C', 'C', 'D', 'C', 'D', 'B', 'C', 'C', 'C', 'D', 'A',\n",
" 'D', 'C', 'A', 'B', 'D', 'B', 'B', 'A', 'D', 'A', 'D', 'D', 'D',\n",
" 'C', 'B', 'D', 'A', 'B', 'B', 'A', 'D', 'A', 'B', '', 'B', 'B',\n",
" 'C', 'A', 'B', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'A', 'C', 'A',\n",
" 'A', 'D', 'B', 'D', 'B', 'B', 'C', 'D', 'A', 'A', 'D', 'B', 'C',\n",
" 'A', 'D', 'B', 'A', 'D', 'A', 'A', 'D', 'A', 'C', 'A', 'B', 'A',\n",
" 'B', 'B', 'D', 'D', 'C', 'B', 'A', 'C', 'D', 'B', 'B', 'A', 'B',\n",
" 'A', 'B', 'D', 'B', 'D', 'A', 'A', 'Missing', 'B', 'B', 'A', 'D',\n",
" 'D', 'B', 'A', 'B', 'B', 'A', 'D', 'C', 'B', 'A', 'A', 'D', 'B',\n",
" 'B', 'B', 'D', 'B', 'B', 'B', 'B', 'C', 'B', 'C', 'A', 'C', 'C',\n",
" 'D', 'A', 'D', 'B', 'D', 'C', 'C', 'A', 'D', 'D', 'D', 'C', 'A',\n",
" 'A', 'B', 'A', 'A', 'C', 'C', 'A', 'C', 'B', 'D', 'C', 'A', 'A',\n",
" 'A, B', 'C', 'A', 'B', 'C', 'A', 'A', 'A', 'D', 'B', 'D', 'C', 'B',\n",
" 'A', 'A', 'A', 'B', 'A', 'D', 'A', 'None of the above', 'B', 'D',\n",
" 'B', 'A', 'A', 'A', 'B', 'C', 'A', 'D', 'B', 'B', 'B', 'A', 'B',\n",
" 'B', 'B', 'C', 'A', 'B', 'D', 'A', 'D', 'A', 'D', 'C', 'B', 'C',\n",
" 'B', 'D', 'B', 'B', 'D', 'D', 'D', 'B', 'D', 'A', 'D', 'C', 'A',\n",
" 'D', 'B', 'D', 'A', 'A', 'A', 'D', 'C', 'B', 'A', 'C', 'B', 'C',\n",
" 'D', 'A', 'A', 'D', 'D', 'A', 'C', 'C', 'B', 'B', 'D', 'C', 'C',\n",
" 'A', 'A', 'A', 'B', 'A', 'C', 'B', 'D', 'D', 'A', 'C', 'D', 'A',\n",
" 'B', 'C', 'D', 'C', 'A', 'C', 'D', 'C', 'B', 'C', 'A', 'A', 'D',\n",
" 'C', 'C', 'A', 'C', 'B', 'A', 'A', 'C', 'B', 'C', 'B', 'D', 'D',\n",
" 'D', 'A', 'B', 'B', 'D', 'D', 'D', 'A', 'B', 'A', 'B', 'D', 'B',\n",
" 'A', 'B', 'B', 'C', 'B', 'B', 'C', 'A', 'A', 'D', 'B', 'C', 'B',\n",
" 'C', 'A', 'A', 'C', 'B', 'A', 'A', 'A', 'C', 'B'], dtype='<U17')"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pred"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## RAG VERSION 2"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/pinecone/index.py:4: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from tqdm.autonotebook import tqdm\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading model\n",
"\n",
"\n",
"Models downloaded\n"
]
}
],
"source": [
"from demo_rag_gpt_4 import api_call\n",
"from tqdm import tqdm\n",
"import numpy as np\n",
"# from langchain.prompts import PromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate\n",
"# from langchain.chat_models import ChatOpenAI\n",
"# from langchain.schema.messag\n",
"# es import SystemMessage"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"question_list = np.load(\"data/medmcqa/question_list.npy\")\n",
"true = np.load(\"data/medmcqa/answer_list.npy\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/500 [00:00<?, ?it/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 48%|████▊ | 239/500 [20:08<21:43, 5.00s/it]Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised Timeout: Request timed out: HTTPSConnectionPool(host='api.openai.com', port=443): Read timed out. (read timeout=600).\n",
" 54%|█████▍ | 271/500 [22:30<16:43, 4.38s/it]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"(429)\n",
"Reason: Too Many Requests\n",
"HTTP response headers: HTTPHeaderDict({'content-type': 'application/json', 'Content-Length': '75', 'date': 'Mon, 06 Nov 2023 23:23:33 GMT', 'x-envoy-upstream-service-time': '3', 'server': 'envoy', 'Via': '1.1 google', 'Alt-Svc': 'h3=\":443\"; ma=2592000,h3-29=\":443\"; ma=2592000'})\n",
"HTTP response body: {\"code\":8,\"message\":\"Too many requests. Please retry shortly\",\"details\":[]}\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 67%|██████▋ | 334/500 [26:46<10:24, 3.76s/it]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"(429)\n",
"Reason: Too Many Requests\n",
"HTTP response headers: HTTPHeaderDict({'content-type': 'application/json', 'Content-Length': '75', 'date': 'Mon, 06 Nov 2023 23:27:50 GMT', 'x-envoy-upstream-service-time': '0', 'server': 'envoy', 'Via': '1.1 google', 'Alt-Svc': 'h3=\":443\"; ma=2592000,h3-29=\":443\"; ma=2592000'})\n",
"HTTP response body: {\"code\":8,\"message\":\"Too many requests. Please retry shortly\",\"details\":[]}\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 96%|█████████▌| 481/500 [37:20<01:12, 3.82s/it]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"(429)\n",
"Reason: Too Many Requests\n",
"HTTP response headers: HTTPHeaderDict({'content-type': 'application/json', 'Content-Length': '75', 'date': 'Mon, 06 Nov 2023 23:38:24 GMT', 'x-envoy-upstream-service-time': '1', 'server': 'envoy', 'Via': '1.1 google', 'Alt-Svc': 'h3=\":443\"; ma=2592000,h3-29=\":443\"; ma=2592000'})\n",
"HTTP response body: {\"code\":8,\"message\":\"Too many requests. Please retry shortly\",\"details\":[]}\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 500/500 [38:41<00:00, 4.64s/it]\n"
]
}
],
"source": [
"import concurrent.futures\n",
"from tqdm import tqdm\n",
"import time # Import the time module\n",
"\n",
"pred_list = []\n",
"exception_list = []\n",
"doc_list = []\n",
"\n",
"def process_question(question):\n",
" answer = None # Initialize answer before the try block\n",
" try:\n",
" answer = api_call(question, history={})\n",
" option = answer[\"option\"]\n",
" doc = answer[\"doc_no\"]\n",
" pred_list.append(option)\n",
" doc_list.append([i for i in doc.split(',')])\n",
" pbar.update(1) # Update the tqdm progress bar\n",
" time.sleep(5) # Add a 1-second delay between API calls (adjust as needed)\n",
" except Exception as e:\n",
" print(e)\n",
" exception_list.append([e, answer])\n",
" pred_list.append(\"\")\n",
" pbar.update(1) # Update the tqdm progress bar\n",
" time.sleep(5) # Add a 1-second delay even when an exception occurs\n",
"\n",
"question_list = question_list[:500]\n",
"\n",
"# Specify the number of threads by setting max_workers\n",
"num_threads = 4 # You can adjust this number as needed\n",
"with tqdm(total=len(question_list)) as pbar:\n",
" with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:\n",
" list(executor.map(process_question, question_list))\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"arr = np.array(pred_list)\n",
"np.save(\"prediction/w_rag/medmcqa/pred_error.npy\", arr)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[['1'],\n",
" [''],\n",
" ['1', '4'],\n",
" ['2'],\n",
" [''],\n",
" ['1', '2'],\n",
" ['1', '4'],\n",
" ['1'],\n",
" ['No document used'],\n",
" ['Document 3'],\n",
" ['1', '2'],\n",
" ['4'],\n",
" [''],\n",
" ['No document used'],\n",
" ['1'],\n",
" ['2'],\n",
" ['1', '2'],\n",
" ['1'],\n",
" ['1'],\n",
" ['4'],\n",
" ['3'],\n",
" ['Not mentioned in the provided documents'],\n",
" ['1'],\n",
" [''],\n",
" ['1'],\n",
" ['1', '4'],\n",
" ['1'],\n",
" [''],\n",
" ['4'],\n",
" ['2'],\n",
" ['5'],\n",
" ['1'],\n",
" ['1'],\n",
" ['1'],\n",
" ['3'],\n",
" ['1', '2', '4'],\n",
" ['Not available in documents'],\n",
" [''],\n",
" ['2'],\n",
" ['None'],\n",
" ['1', '4'],\n",
" ['3'],\n",
" ['1', '2'],\n",
" ['No document used'],\n",
" ['None'],\n",
" ['1'],\n",
" ['1'],\n",
" ['1'],\n",
" ['3'],\n",
" [''],\n",
" ['1', '3'],\n",
" ['1'],\n",
" ['1'],\n",
" ['1', '2', '4'],\n",
" ['Not available in provided documents'],\n",
" ['2'],\n",
" ['1', ' 2', ' 3'],\n",
" ['1'],\n",
" [''],\n",
" ['2'],\n",
" ['1'],\n",
" ['2'],\n",
" ['4'],\n",
" ['2'],\n",
" ['4'],\n",
" ['5'],\n",
" ['Not mentioned in provided documents'],\n",
" ['1', '3'],\n",
" ['1'],\n",
" ['4', '2'],\n",
" ['No Document Used'],\n",
" ['2'],\n",
" ['2'],\n",
" ['4'],\n",
" ['3'],\n",
" ['Not applicable'],\n",
" ['1', ' 4'],\n",
" ['1', '2'],\n",
" ['1'],\n",
" ['5'],\n",
" ['2'],\n",
" ['1'],\n",
" ['1', '2'],\n",
" ['1', '2'],\n",
" ['1', '5'],\n",
" [''],\n",
" ['2'],\n",
" ['4'],\n",
" ['3'],\n",
" ['2'],\n",
" ['1', '2', '4', '5'],\n",
" ['1'],\n",
" [''],\n",
" ['2'],\n",
" ['1', '3', '4'],\n",
" ['3'],\n",
" ['N/A'],\n",
" ['1', '4', '5'],\n",
" ['1'],\n",
" ['2'],\n",
" ['1'],\n",
" ['1'],\n",
" [''],\n",
" ['1', '2'],\n",
" [''],\n",
" [''],\n",
" ['1'],\n",
" ['1', '3', '5'],\n",
" ['3', '5'],\n",
" ['1', '2'],\n",
" ['1'],\n",
" ['Not used'],\n",
" ['2'],\n",
" ['5'],\n",
" ['4'],\n",
" ['5'],\n",
" ['1'],\n",
" ['1', '2', '3', '4'],\n",
" ['1'],\n",
" ['Document 1', ' Document 2', ' Document 4', ' Document 5'],\n",
" ['4'],\n",
" ['2'],\n",
" [''],\n",
" [''],\n",
" ['1'],\n",
" ['1'],\n",
" ['None'],\n",
" ['3', '4'],\n",
" ['1'],\n",
" ['5'],\n",
" ['2'],\n",
" ['Not mentioned in any document'],\n",
" ['1'],\n",
" ['1'],\n",
" ['1', '3'],\n",
" ['1', '2', '3'],\n",
" ['1'],\n",
" ['1'],\n",
" ['1'],\n",
" ['1', '3'],\n",
" ['5'],\n",
" ['Not applicable'],\n",
" ['2'],\n",
" ['3'],\n",
" [''],\n",
" ['1', '4'],\n",
" ['None'],\n",
" ['4'],\n",
" ['2'],\n",
" ['1'],\n",
" ['3'],\n",
" ['3'],\n",
" [''],\n",
" ['Based on medical knowledge'],\n",
" ['1', '2', '3', '4'],\n",
" ['1'],\n",
" ['2'],\n",
" ['1'],\n",
" ['1', '2'],\n",
" ['3'],\n",
" ['1'],\n",
" ['1'],\n",
" ['1'],\n",
" ['1'],\n",
" [''],\n",
" ['1', '2', '3'],\n",
" ['1'],\n",
" ['3'],\n",
" ['1'],\n",
" ['Document: 1', ' Document: 2'],\n",
" ['2'],\n",
" ['1'],\n",
" [''],\n",
" ['3'],\n",
" ['1', '2', '5'],\n",
" ['Not explicitly stated in the provided documents'],\n",
" ['3'],\n",
" ['1'],\n",
" [''],\n",
" [''],\n",
" ['1', ' 4'],\n",
" ['2'],\n",
" [''],\n",
" ['1', '3', '4', '5'],\n",
" ['1', '2'],\n",
" ['1'],\n",
" ['1', ' 2'],\n",
" ['No document used.'],\n",
" ['1', '3'],\n",
" ['1'],\n",
" ['3'],\n",
" [''],\n",
" ['None'],\n",
" ['4', '5'],\n",
" ['1', ' 2', ' 3'],\n",
" ['1', '4'],\n",
" ['4'],\n",
" ['1'],\n",
" ['1'],\n",
" [''],\n",
" [''],\n",
" ['No document used'],\n",
" ['5'],\n",
" ['1', '5'],\n",
" ['4'],\n",
" ['1', '2', '5'],\n",
" ['1', '2', '3'],\n",
" [''],\n",
" ['0'],\n",
" ['2'],\n",
" ['5'],\n",
" ['3'],\n",
" ['1'],\n",
" ['2'],\n",
" ['4'],\n",
" ['1', '3'],\n",
" ['1', '2', '3'],\n",
" ['1'],\n",
" ['1', '4', '5'],\n",
" ['None'],\n",
" ['Not mentioned in provided documents'],\n",
" ['1'],\n",
" ['2', '4'],\n",
" ['1'],\n",
" ['3'],\n",
" ['3'],\n",
" [''],\n",
" ['2'],\n",
" ['N/A'],\n",
" ['4'],\n",
" ['1'],\n",
" ['1'],\n",
" ['1'],\n",
" ['1'],\n",
" ['Not Mentioned'],\n",
" ['1', '2', '3', '4'],\n",
" ['5'],\n",
" ['Not mentioned in any document'],\n",
" [''],\n",
" [''],\n",
" ['2'],\n",
" ['1'],\n",
" ['1', '2'],\n",
" ['None used'],\n",
" ['2', '3', '5'],\n",
" ['Not mentioned'],\n",
" ['1', '2', '3'],\n",
" ['3'],\n",
" ['1'],\n",
" ['4', '5'],\n",
" ['1', '3'],\n",
" ['1'],\n",
" ['2'],\n",
" ['1', '5'],\n",
" ['2'],\n",
" ['1'],\n",
" ['2'],\n",
" [''],\n",
" ['1'],\n",
" ['None'],\n",
" ['2'],\n",
" ['1'],\n",
" ['5'],\n",
" ['3', ' 2'],\n",
" ['3'],\n",
" [''],\n",
" ['3'],\n",
" ['1'],\n",
" ['1'],\n",
" [''],\n",
" ['1'],\n",
" ['1'],\n",
" ['1'],\n",
" ['2'],\n",
" ['4'],\n",
" ['4'],\n",
" ['2'],\n",
" ['1'],\n",
" ['2', '3'],\n",
" ['3', ' 4'],\n",
" [''],\n",
" ['3'],\n",
" ['2'],\n",
" ['2'],\n",
" ['1'],\n",
" ['1'],\n",
" ['2'],\n",
" ['1', '3', '4'],\n",
" ['1', '2'],\n",
" ['5'],\n",
" ['1', '2'],\n",
" ['1', '2'],\n",
" ['No Document used. This information comes from general ophthalmological knowledge.'],\n",
" ['1'],\n",
" [''],\n",
" [''],\n",
" ['3'],\n",
" ['1'],\n",
" ['1'],\n",
" [''],\n",
" ['1', '2'],\n",
" ['1'],\n",
" ['1', '4'],\n",
" ['2'],\n",
" ['1'],\n",
" [''],\n",
" ['Not mentioned in the provided documents but answered based on general knowledge'],\n",
" ['1'],\n",
" ['2', '3'],\n",
" ['2'],\n",
" ['2', '3'],\n",
" ['1', '2'],\n",
" ['5'],\n",
" ['1'],\n",
" ['3'],\n",
" ['2', '4'],\n",
" ['1', '4'],\n",
" ['1'],\n",
" ['1'],\n",
" ['4'],\n",
" ['1'],\n",
" [''],\n",
" ['Not mentioned in the provided documents'],\n",
" ['1', '3'],\n",
" ['4'],\n",
" ['None'],\n",
" ['None'],\n",
" ['1'],\n",
" ['2'],\n",
" ['4'],\n",
" ['4'],\n",
" ['5'],\n",
" ['1'],\n",
" ['1', '2'],\n",
" ['5'],\n",
" ['1', ' 2', ' 4'],\n",
" ['1', '2', ' and 4'],\n",
" ['1'],\n",
" [''],\n",
" ['4'],\n",
" ['1'],\n",
" ['4'],\n",
" ['2'],\n",
" ['2', '5'],\n",
" ['1'],\n",
" ['None'],\n",
" ['1'],\n",
" ['4'],\n",
" ['1'],\n",
" [''],\n",
" ['1', '5'],\n",
" ['1', '3'],\n",
" ['2'],\n",
" ['1', '2', '3', '4'],\n",
" ['1'],\n",
" ['1', '4'],\n",
" ['1'],\n",
" ['1', '3'],\n",
" ['1'],\n",
" ['1'],\n",
" [''],\n",
" ['3'],\n",
" ['1', '2'],\n",
" ['1', '3'],\n",
" ['4'],\n",
" ['1', '3'],\n",
" ['5'],\n",
" ['none'],\n",
" ['1', '2'],\n",
" [''],\n",
" ['3'],\n",
" ['1'],\n",
" ['1'],\n",
" ['Not explicitly mentioned in the documents'],\n",
" ['1', '2'],\n",
" [''],\n",
" ['Not found in documents', ' knowledge based answer'],\n",
" ['1'],\n",
" ['1'],\n",
" ['1', '3'],\n",
" ['No document used'],\n",
" ['1', '2', '4'],\n",
" ['2'],\n",
" ['4'],\n",
" ['1'],\n",
" ['1'],\n",
" ['1'],\n",
" ['1'],\n",
" [''],\n",
" [''],\n",
" ['1'],\n",
" ['Not applicable'],\n",
" [''],\n",
" [''],\n",
" ['1'],\n",
" ['1', '2'],\n",
" ['1', '2'],\n",
" ['3'],\n",
" ['Not mentioned in the provided documents'],\n",
" ['1', '3'],\n",
" ['Not mentioned in provided documents'],\n",
" ['1', ' 3', ' 5'],\n",
" ['3', '5'],\n",
" ['1', '2', '3'],\n",
" ['Not mentioned in the documents'],\n",
" ['Not provided in the given documents'],\n",
" ['Not applicable'],\n",
" ['1', '2', '3'],\n",
" ['1'],\n",
" ['1', ' 4'],\n",
" ['1', '4'],\n",
" [''],\n",
" ['1'],\n",
" ['5'],\n",
" [''],\n",
" ['No document used'],\n",
" ['1'],\n",
" ['1', '5'],\n",
" ['1', '2', '4'],\n",
" ['3', '4'],\n",
" ['2'],\n",
" ['1', '2'],\n",
" ['1'],\n",
" [''],\n",
" ['3'],\n",
" ['1'],\n",
" [''],\n",
" ['Not applicable'],\n",
" ['1'],\n",
" ['1'],\n",
" ['1', '5'],\n",
" ['1'],\n",
" ['1', '2'],\n",
" ['1', '2'],\n",
" ['1', '2'],\n",
" ['1', '2', '3'],\n",
" ['1'],\n",
" ['1'],\n",
" ['1'],\n",
" [''],\n",
" ['4'],\n",
" ['3'],\n",
" ['1', '2', '3'],\n",
" ['1'],\n",
" ['1', '2'],\n",
" ['1'],\n",
" ['2'],\n",
" ['1'],\n",
" ['5'],\n",
" ['1'],\n",
" [''],\n",
" ['1'],\n",
" ['1'],\n",
" ['2'],\n",
" ['1', '3'],\n",
" [''],\n",
" ['2'],\n",
" ['1', '2', '3', '5'],\n",
" ['1'],\n",
" ['3'],\n",
" ['4'],\n",
" [''],\n",
" ['2'],\n",
" ['4'],\n",
" ['3'],\n",
" ['1', '4'],\n",
" [''],\n",
" ['1', ' 2', ' 3'],\n",
" ['1', '2', '3'],\n",
" ['1', '2'],\n",
" ['1', '2'],\n",
" [''],\n",
" ['3'],\n",
" ['1'],\n",
" ['None'],\n",
" ['1', '3'],\n",
" ['1', '2'],\n",
" ['1'],\n",
" ['2'],\n",
" ['No document used'],\n",
" ['4'],\n",
" ['4'],\n",
" [''],\n",
" ['1'],\n",
" ['1'],\n",
" ['4'],\n",
" ['2', '3'],\n",
" ['1', '3'],\n",
" [''],\n",
" ['1'],\n",
" ['None'],\n",
" ['1'],\n",
" ['1'],\n",
" ['1'],\n",
" ['2'],\n",
" ['4'],\n",
" ['4']]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"doc_list"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"doc_str = [str(i) for i in doc_list]"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"arr = np.array(pred_list)\n",
"np.save(\"prediction/w_rag/medmcqa/pred.npy\", pred_list)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"exp_list = []\n",
"for i in range(len(pred_list)):\n",
" if len(arr[i]) == 0:\n",
" exp_list.append(i)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[270, 333, 480]"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"exp_list"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"exp_ques = [question_list[i] for i in exp_list]"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/500 [00:00<?, ?it/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 1%| | 3/500 [00:17<47:07, 5.69s/it] \n"
]
}
],
"source": [
"pred_list_2 = []\n",
"exception_list_2 = []\n",
"doc_list_2 = []\n",
"\n",
"def process_question(question):\n",
" answer = None # Initialize answer before the try block\n",
" try:\n",
" answer = api_call(question, history={})\n",
" option = answer[\"option\"]\n",
" doc = answer[\"doc_no\"]\n",
" pred_list_2.append(option)\n",
" doc_list_2.append([i for i in doc.split(',')])\n",
" pbar.update(1) # Update the tqdm progress bar\n",
" time.sleep(5) # Add a 1-second delay between API calls (adjust as needed)\n",
" except Exception as e:\n",
" print(e)\n",
" exception_list_2.append([e, answer])\n",
" pred_list_2.append(\"\")\n",
" pbar.update(1) # Update the tqdm progress bar\n",
" time.sleep(5) # Add a 1-second delay even when an exception occurs\n",
"\n",
"# question_list = question_list[:500]\n",
"\n",
"# Specify the number of threads by setting max_workers\n",
"num_threads = 4 # You can adjust this number as needed\n",
"with tqdm(total=len(question_list)) as pbar:\n",
" with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:\n",
" list(executor.map(process_question, exp_ques))"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['C', 'D', 'B']"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pred_list_2"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"for i in range(len(exp_list)):\n",
" pred_list[exp_list[i]] = pred_list_2[i]"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"arr = np.load(\"prediction/w_rag/medmcqa/pred.npy\")"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"pred_list = list(arr)"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"true_list = np.load(\"data/medmcqa/answer_list.npy\")\n",
"map_list = {\"a\":0, \"b\": 1, \"c\": 2, \"d\": 3}\n",
"option_list = [\"a\", \"b\", \"c\", \"d\"]"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"pred_pross = []\n",
"for i in range(len(pred_list)):\n",
" pred = pred_list[i]\n",
" actual = true_list[i]\n",
" if pred.lower() in option_list:\n",
" p = map_list[pred.lower()]\n",
" if p == actual:\n",
" pred_pross.append(True)\n",
" else:\n",
" pred_pross.append(False)\n",
" else:\n",
" pred_pross.append(False)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, msg_start, len(result))\n",
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, msg_start, len(result))\n",
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, msg_start, len(result))\n"
]
}
],
"source": [
"actual = [1 for pred in pred_pross]\n",
"from sklearn.metrics import classification_report\n",
"report = classification_report(actual, pred_pross)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" precision recall f1-score support\n",
"\n",
" 0 0.00 0.00 0.00 0\n",
" 1 1.00 0.52 0.68 500\n",
"\n",
" accuracy 0.52 500\n",
" macro avg 0.50 0.26 0.34 500\n",
"weighted avg 1.00 0.52 0.68 500\n",
"\n"
]
}
],
"source": [
"print(report)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/langchain/vectorstores/pinecone.py:59: UserWarning: Passing in `embedding` as a Callable is deprecated. Please pass in an Embeddings object instead.\n",
" warnings.warn(\n"
]
}
],
"source": [
"import gradio as gr\n",
"from conversation import make_conversation, auth_function, random_response\n",
"import random"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"demo = gr.ChatInterface(make_conversation).queue()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# demo.launch(auth=auth_function, share=True)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from global_variable_module import global_output, gobal_input"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# def random_response(message, accuracy, history):\n",
"# print(type(message))\n",
"# print(message)\n",
"# print(accuracy)\n",
" \n",
"# out = random.choice([\"Yes\", \"No\"])\n",
"# # open a txt file\n",
"# with open(\"function hit\", \"a+\") as f:\n",
"# f.write(message)\n",
"# return "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/utils.py:816: UserWarning: Expected 3 arguments for function <function random_response at 0x29ba863b0>, received 2.\n",
" warnings.warn(\n",
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/utils.py:820: UserWarning: Expected at least 3 arguments for function <function random_response at 0x29ba863b0>, received 2.\n",
" warnings.warn(\n"
]
}
],
"source": [
"with gr.Blocks() as demo:\n",
" chatbot = gr.ChatInterface(random_response)\n",
" # print(chatbot)\n",
" radio = gr.Radio([\"Correct\", \"InCorrect\", \"Partially Corrext\"], label=\"accuracy\", info=\"Please rate the system response\")\n",
" submit_radio = gr.Button(value=\"Submit\")\n",
" t = gr.Textbox(value=\"\", label=\"Input\")\n",
" txt_3 = gr.Textbox(value=\"\", label=\"Output\")\n",
" submit_radio.click(random_response, inputs=[t, radio], outputs=[txt_3])\n",
" # msg.submit(random_response, [msg, chatbot], [msg, chatbot])"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'global_variable_module'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m/Users/aakashbhatnagar/Documents/masters/ophthal_llm/temp.ipynb Cell 99\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> <a href='vscode-notebook-cell:/Users/aakashbhatnagar/Documents/masters/ophthal_llm/temp.ipynb#Y203sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mglobal_variable_module\u001b[39;00m \u001b[39mimport\u001b[39;00m global_var\n",
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'global_variable_module'"
]
}
],
"source": [
"from global_variable_module import global_var"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/helpers.py:796: UserWarning: Unexpected argument. Filling with None.\n",
" warnings.warn(\"Unexpected argument. Filling with None.\")\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'str'>\n",
"hi\n",
"[]\n"
]
}
],
"source": [
"demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/langchain/vectorstores/pinecone.py:59: UserWarning: Passing in `embedding` as a Callable is deprecated. Please pass in an Embeddings object instead.\n",
" warnings.warn(\n"
]
}
],
"source": [
"import gradio as gr\n",
"from conversation import run\n",
"import random\n",
"import time\n",
"import random\n",
"\n",
"global USERNAME\n",
"global PASSWORD\n",
"global INPUT\n",
"global OUTPUT\n",
"global SOURCE\n",
"global DOCS\n",
"\n",
"def auth_function(username, password):\n",
" USERNAME = username\n",
" user_name = username\n",
" return username == password\n",
"\n",
"def random_response(message):\n",
" # print(type(message))\n",
" # print(message)\n",
" # print(accuracy)\n",
" \n",
" out = random.choice([\"Yes\", \"No\"])\n",
" # open a txt file\n",
" # with open(\"function hit\", \"a+\") as f:\n",
" # f.write(message)\n",
" return out, \"THIS IS SOURCE\", \"THIS IS DOCS\"\n",
"\n",
"\n",
"def make_conversation(message, history):\n",
" INPUT = message\n",
" text_, source, docs = random_response(message)\n",
" OUTPUT = text_\n",
" SOURCE = source\n",
" DOCS = docs\n",
"\n",
" print(\"INPUT: \", INPUT)\n",
" print(\"OUTPUT: \", OUTPUT)\n",
" print(\"SOURCE: \", SOURCE)\n",
" print(\"DOCS: \", DOCS)\n",
"\n",
" for i in range(len(text_)):\n",
" time.sleep(0.001)\n",
" yield text_[: i+1]\n",
"\n",
"def insert_text(accuracy, correct_output):\n",
" print(accuracy)\n",
" print(\"input \", INPUT)\n",
" print(\"output \", OUTPUT)\n",
" print(\"correct output\", correct_output)\n",
" print(\"source \", SOURCE)\n",
" print(\"docs \", DOCS)\n",
"\n",
" return \"DONE\"\n",
"\n",
"with gr.Blocks() as demo:\n",
" chatbot = gr.ChatInterface(make_conversation)\n",
" # print(chatbot)\n",
" radio = gr.Radio([\"Correct\", \"InCorrect\", \"Partially Corrext\"], label=\"accuracy\", info=\"Please rate the system response\")\n",
" t = gr.Textbox(value=\"\", label=\"Input\")\n",
" submit_radio = gr.Button(value=\"Submit\")\n",
" txt_3 = gr.Textbox(value=\"\", label=\"Output\")\n",
" submit_radio.click(insert_text, inputs=[t, radio], outputs=[txt_3])\n",
" # msg.submit(random_response, [msg, chatbot], [msg, chatbot])\n",
"\n",
"# with gr.Blocks(css=\"style.css\") as demo:\n",
"# gr.Markdown(\"##DR. VAI\")\n",
"# gr.ChatInterface(make_conversation).queue()\n",
"\n",
"# demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INPUT: hi\n",
"OUTPUT: No\n",
"SOURCE: THIS IS SOURCE\n",
"DOCS: THIS IS DOCS\n",
"this is correct\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/queueing.py\", line 427, in call_prediction\n",
" output = await route_utils.call_process_api(\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/route_utils.py\", line 232, in call_process_api\n",
" output = await app.get_blocks().process_api(\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/blocks.py\", line 1497, in process_api\n",
" result = await self.call_function(\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/blocks.py\", line 1119, in call_function\n",
" prediction = await anyio.to_thread.run_sync(\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
" return await get_asynclib().run_sync_in_worker_thread(\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
" return await future\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
" result = context.run(func, *args)\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/utils.py\", line 665, in wrapper\n",
" response = f(*args, **kwargs)\n",
" File \"/var/folders/73/1kdzs7qn01v55rn5825j1cjr0000gn/T/ipykernel_7321/1082532790.py\", line 49, in insert_text\n",
" print(\"input \", INPUT)\n",
"NameError: name 'INPUT' is not defined\n",
"Traceback (most recent call last):\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/queueing.py\", line 427, in call_prediction\n",
" output = await route_utils.call_process_api(\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/route_utils.py\", line 232, in call_process_api\n",
" output = await app.get_blocks().process_api(\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/blocks.py\", line 1497, in process_api\n",
" result = await self.call_function(\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/blocks.py\", line 1119, in call_function\n",
" prediction = await anyio.to_thread.run_sync(\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
" return await get_asynclib().run_sync_in_worker_thread(\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
" return await future\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
" result = context.run(func, *args)\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/utils.py\", line 665, in wrapper\n",
" response = f(*args, **kwargs)\n",
" File \"/var/folders/73/1kdzs7qn01v55rn5825j1cjr0000gn/T/ipykernel_7321/1082532790.py\", line 49, in insert_text\n",
" print(\"input \", INPUT)\n",
"NameError: name 'INPUT' is not defined\n",
"\n",
"The above exception was the direct cause of the following exception:\n",
"\n",
"Traceback (most recent call last):\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/queueing.py\", line 472, in process_events\n",
" response = await self.call_prediction(awake_events, batch)\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/queueing.py\", line 436, in call_prediction\n",
" raise Exception(str(error) if show_error else None) from error\n",
"Exception: None\n"
]
}
],
"source": [
"demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'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'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import os\n",
"\n",
"os.getenv(\"OPENAI_API_KEY\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/utils.py:816: UserWarning: Expected 2 arguments for function <function insert_text at 0x288a30d30>, received 1.\n",
" warnings.warn(\n",
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/utils.py:820: UserWarning: Expected at least 2 arguments for function <function insert_text at 0x288a30d30>, received 1.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7862\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import gradio as gr\n",
"from conversation import run, auth_function\n",
"import random\n",
"import time\n",
"import random\n",
"\n",
"\n",
"\n",
"def random_response(message):\n",
" \n",
" out = random.choice([\"Yes\", \"No\"])\n",
" return out, \"THIS IS SOURCE\", \"THIS IS DOCS\"\n",
"\n",
"\n",
"def make_conversation(message, history):\n",
" text_, source, docs = run(message)\n",
" return text_, str(history)\n",
"\n",
"\n",
"with gr.Blocks() as demo:\n",
" input_history = gr.State([])\n",
" output1_history = gr.State([])\n",
" output_2_history = gr.State([])\n",
"\n",
" \n",
"\n",
" chatbot = gr.ChatInterface(make_conversation)\n",
" # print(chatbot)\n",
" radio = gr.Radio([\"Correct\", \"InCorrect\", \"Partially Corrext\"], label=\"accuracy\", info=\"Please rate the system response\")\n",
" t = gr.Textbox(value=\"\", label=\"Input\")\n",
" submit_radio = gr.Button(value=\"Submit\")\n",
" txt_3 = gr.Textbox(value=\"\", label=\"Output\")\n",
" \n",
" # msg.submit(random_response, [msg, chatbot], [msg, chatbot])\n",
"\n",
" def make_conversation(message, history):\n",
" text_, source, docs = run(message)\n",
" return {\n",
" input_history: message,\n",
" output1_history: text_,\n",
"\n",
" }\n",
" \n",
" submit_radio.click(insert_text, inputs=[chatbot], outputs=[txt_3])\n",
"# with gr.Blocks(css=\"style.css\") as demo:\n",
"# gr.Markdown(\"##DR. VAI\")\n",
"# gr.ChatInterface(make_conversation).queue()\n",
"\n",
"demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/langchain/vectorstores/pinecone.py:59: UserWarning: Passing in `embedding` as a Callable is deprecated. Please pass in an Embeddings object instead.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mHello Aakash, I'm Dr.V AI, an assistant to ophthalmologists. I'm designed to help answer medical questions related to ophthalmology. If you have any questions about eye health, eye diseases, or eye care, feel free to ask!\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"Hello Aakash, I'm Dr.V AI, an assistant to ophthalmologists. I'm designed to help answer medical questions related to ophthalmology. If you have any questions about eye health, eye diseases, or eye care, feel free to ask!\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/queueing.py\", line 427, in call_prediction\n",
" output = await route_utils.call_process_api(\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/route_utils.py\", line 232, in call_process_api\n",
" output = await app.get_blocks().process_api(\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/blocks.py\", line 1506, in process_api\n",
" data = self.postprocess_data(fn_index, result[\"prediction\"], state)\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/blocks.py\", line 1396, in postprocess_data\n",
" outputs_cached = processing_utils.move_files_to_cache(prediction_value, block) # type: ignore\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/processing_utils.py\", line 294, in move_files_to_cache\n",
" return client_utils.traverse(data, _move_to_cache, client_utils.is_file_obj)\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio_client/utils.py\", line 782, in traverse\n",
" new_obj.append(traverse(item, func, is_root))\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio_client/utils.py\", line 782, in traverse\n",
" new_obj.append(traverse(item, func, is_root))\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio_client/utils.py\", line 777, in traverse\n",
" new_obj[key] = traverse(value, func, is_root)\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio_client/utils.py\", line 773, in traverse\n",
" return func(json_obj)\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/processing_utils.py\", line 287, in _move_to_cache\n",
" temp_file_path = move_resource_to_block_cache(payload.path, block)\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/processing_utils.py\", line 265, in move_resource_to_block_cache\n",
" temp_file_path = save_file_to_cache(\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/processing_utils.py\", line 191, in save_file_to_cache\n",
" temp_dir = hash_file(file_path)\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/processing_utils.py\", line 118, in hash_file\n",
" with open(file_path, \"rb\") as f:\n",
"FileNotFoundError: [Errno 2] No such file or directory: \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/Hello Aakash, I'm Dr.V AI, an assistant to ophthalmologists. I'm designed to help answer medical questions related to ophthalmology. If you have any questions about eye health, eye diseases, or eye care, feel free to ask!\"\n",
"Traceback (most recent call last):\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/queueing.py\", line 427, in call_prediction\n",
" output = await route_utils.call_process_api(\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/route_utils.py\", line 232, in call_process_api\n",
" output = await app.get_blocks().process_api(\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/blocks.py\", line 1506, in process_api\n",
" data = self.postprocess_data(fn_index, result[\"prediction\"], state)\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/blocks.py\", line 1396, in postprocess_data\n",
" outputs_cached = processing_utils.move_files_to_cache(prediction_value, block) # type: ignore\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/processing_utils.py\", line 294, in move_files_to_cache\n",
" return client_utils.traverse(data, _move_to_cache, client_utils.is_file_obj)\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio_client/utils.py\", line 782, in traverse\n",
" new_obj.append(traverse(item, func, is_root))\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio_client/utils.py\", line 782, in traverse\n",
" new_obj.append(traverse(item, func, is_root))\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio_client/utils.py\", line 777, in traverse\n",
" new_obj[key] = traverse(value, func, is_root)\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio_client/utils.py\", line 773, in traverse\n",
" return func(json_obj)\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/processing_utils.py\", line 287, in _move_to_cache\n",
" temp_file_path = move_resource_to_block_cache(payload.path, block)\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/processing_utils.py\", line 265, in move_resource_to_block_cache\n",
" temp_file_path = save_file_to_cache(\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/processing_utils.py\", line 191, in save_file_to_cache\n",
" temp_dir = hash_file(file_path)\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/processing_utils.py\", line 118, in hash_file\n",
" with open(file_path, \"rb\") as f:\n",
"FileNotFoundError: [Errno 2] No such file or directory: \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/Hello Aakash, I'm Dr.V AI, an assistant to ophthalmologists. I'm designed to help answer medical questions related to ophthalmology. If you have any questions about eye health, eye diseases, or eye care, feel free to ask!\"\n",
"\n",
"The above exception was the direct cause of the following exception:\n",
"\n",
"Traceback (most recent call last):\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/queueing.py\", line 472, in process_events\n",
" response = await self.call_prediction(awake_events, batch)\n",
" File \"/Users/aakashbhatnagar/Documents/masters/ophthal_llm/myenv/lib/python3.10/site-packages/gradio/queueing.py\", line 436, in call_prediction\n",
" raise Exception(str(error) if show_error else None) from error\n",
"Exception: None\n"
]
}
],
"source": [
"import gradio as gr\n",
"from conversation import make_conversation, auth_function\n",
"import random\n",
"\n",
"demo = gr.ChatInterface(make_conversation).queue()\n",
"\n",
"demo.launch(auth=auth_function)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Token will not been saved to git credential helper. Pass `add_to_git_credential=True` if you want to set the git credential as well.\n",
"Token is valid (permission: write).\n",
"Your token has been saved to /Users/aakashbhatnagar/.cache/huggingface/token\n",
"Login successful\n"
]
}
],
"source": [
"# !huggingface-cli login\n",
"# or using an environment variable\n",
"!huggingface-cli login --token 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"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "'Dependency' object has no attribute 'launch'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m/Users/aakashbhatnagar/Documents/masters/ophthal_llm/temp.ipynb Cell 109\u001b[0m line \u001b[0;36m2\n\u001b[1;32m <a href='vscode-notebook-cell:/Users/aakashbhatnagar/Documents/masters/ophthal_llm/temp.ipynb#Y212sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mgradio\u001b[39;00m \u001b[39mas\u001b[39;00m \u001b[39mgr\u001b[39;00m\n\u001b[0;32m----> <a href='vscode-notebook-cell:/Users/aakashbhatnagar/Documents/masters/ophthal_llm/temp.ipynb#Y212sZmlsZQ%3D%3D?line=1'>2</a>\u001b[0m gr\u001b[39m.\u001b[39;49mInterface\u001b[39m.\u001b[39;49mload(\u001b[39m\"\u001b[39;49m\u001b[39mhuggingface/drvai/drvai\u001b[39;49m\u001b[39m\"\u001b[39;49m)\u001b[39m.\u001b[39;49mlaunch()\n",
"\u001b[0;31mAttributeError\u001b[0m: 'Dependency' object has no attribute 'launch'"
]
}
],
"source": [
"import gradio as gr\n",
"gr.Interface.load(\"huggingface/drvai/drvai\").launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "myenv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|