Spaces:
Runtime error
Runtime error
import multiprocessing | |
import threading | |
import time | |
from src.vad import AbstractTranscription, TranscriptionConfig, get_audio_duration | |
from src.whisperContainer import WhisperCallback | |
from multiprocessing import Pool | |
from typing import Any, Dict, List | |
import os | |
class ParallelContext: | |
def __init__(self, num_processes: int = None, auto_cleanup_timeout_seconds: float = None): | |
self.num_processes = num_processes | |
self.auto_cleanup_timeout_seconds = auto_cleanup_timeout_seconds | |
self.lock = threading.Lock() | |
self.ref_count = 0 | |
self.pool = None | |
self.cleanup_timer = None | |
def get_pool(self): | |
# Initialize pool lazily | |
if (self.pool is None): | |
context = multiprocessing.get_context('spawn') | |
self.pool = context.Pool(self.num_processes) | |
self.ref_count = self.ref_count + 1 | |
if (self.auto_cleanup_timeout_seconds is not None): | |
self._stop_auto_cleanup() | |
return self.pool | |
def return_pool(self, pool): | |
if (self.pool == pool and self.ref_count > 0): | |
self.ref_count = self.ref_count - 1 | |
if (self.ref_count == 0): | |
if (self.auto_cleanup_timeout_seconds is not None): | |
self._start_auto_cleanup() | |
def _start_auto_cleanup(self): | |
if (self.cleanup_timer is not None): | |
self.cleanup_timer.cancel() | |
self.cleanup_timer = threading.Timer(self.auto_cleanup_timeout_seconds, self._execute_cleanup) | |
self.cleanup_timer.start() | |
print("Started auto cleanup of pool in " + str(self.auto_cleanup_timeout_seconds) + " seconds") | |
def _stop_auto_cleanup(self): | |
if (self.cleanup_timer is not None): | |
self.cleanup_timer.cancel() | |
self.cleanup_timer = None | |
print("Stopped auto cleanup of pool") | |
def _execute_cleanup(self): | |
print("Executing cleanup of pool") | |
if (self.ref_count == 0): | |
self.close() | |
def close(self): | |
self._stop_auto_cleanup() | |
if (self.pool is not None): | |
print("Closing pool of " + str(self.num_processes) + " processes") | |
self.pool.close() | |
self.pool.join() | |
self.pool = None | |
class ParallelTranscriptionConfig(TranscriptionConfig): | |
def __init__(self, device_id: str, override_timestamps, initial_segment_index, copy: TranscriptionConfig = None): | |
super().__init__(copy.non_speech_strategy, copy.segment_padding_left, copy.segment_padding_right, copy.max_silent_period, copy.max_merge_size, copy.max_prompt_window, initial_segment_index) | |
self.device_id = device_id | |
self.override_timestamps = override_timestamps | |
class ParallelTranscription(AbstractTranscription): | |
# Silero VAD typically takes about 3 seconds per minute, so there's no need to split the chunks | |
# into smaller segments than 2 minute (min 6 seconds per CPU core) | |
MIN_CPU_CHUNK_SIZE_SECONDS = 2 * 60 | |
def __init__(self, sampling_rate: int = 16000): | |
super().__init__(sampling_rate=sampling_rate) | |
def transcribe_parallel(self, transcription: AbstractTranscription, audio: str, whisperCallable: WhisperCallback, config: TranscriptionConfig, | |
cpu_device_count: int, gpu_devices: List[str], cpu_parallel_context: ParallelContext = None, gpu_parallel_context: ParallelContext = None): | |
total_duration = get_audio_duration(audio) | |
# First, get the timestamps for the original audio | |
if (cpu_device_count > 1): | |
merged = self._get_merged_timestamps_parallel(transcription, audio, config, total_duration, cpu_device_count, cpu_parallel_context) | |
else: | |
merged = transcription.get_merged_timestamps(audio, config, total_duration) | |
# Split into a list for each device | |
# TODO: Split by time instead of by number of chunks | |
merged_split = list(self._split(merged, len(gpu_devices))) | |
# Parameters that will be passed to the transcribe function | |
parameters = [] | |
segment_index = config.initial_segment_index | |
for i in range(len(merged_split)): | |
device_segment_list = list(merged_split[i]) | |
device_id = gpu_devices[i] | |
if (len(device_segment_list) <= 0): | |
continue | |
print("Device " + str(device_id) + " (index " + str(i) + ") has " + str(len(device_segment_list)) + " segments") | |
# Create a new config with the given device ID | |
device_config = ParallelTranscriptionConfig(device_id, device_segment_list, segment_index, config) | |
segment_index += len(device_segment_list) | |
parameters.append([audio, whisperCallable, device_config]); | |
merged = { | |
'text': '', | |
'segments': [], | |
'language': None | |
} | |
created_context = False | |
# Spawn a separate process for each device | |
try: | |
if (gpu_parallel_context is None): | |
gpu_parallel_context = ParallelContext(len(gpu_devices)) | |
created_context = True | |
# Get a pool of processes | |
pool = gpu_parallel_context.get_pool() | |
# Run the transcription in parallel | |
results = pool.starmap(self.transcribe, parameters) | |
for result in results: | |
# Merge the results | |
if (result['text'] is not None): | |
merged['text'] += result['text'] | |
if (result['segments'] is not None): | |
merged['segments'].extend(result['segments']) | |
if (result['language'] is not None): | |
merged['language'] = result['language'] | |
finally: | |
# Return the pool to the context | |
if (gpu_parallel_context is not None): | |
gpu_parallel_context.return_pool(pool) | |
# Always close the context if we created it | |
if (created_context): | |
gpu_parallel_context.close() | |
return merged | |
def _get_merged_timestamps_parallel(self, transcription: AbstractTranscription, audio: str, config: TranscriptionConfig, total_duration: float, | |
cpu_device_count: int, cpu_parallel_context: ParallelContext = None): | |
parameters = [] | |
chunk_size = max(total_duration / cpu_device_count, self.MIN_CPU_CHUNK_SIZE_SECONDS) | |
chunk_start = 0 | |
cpu_device_id = 0 | |
perf_start_time = time.perf_counter() | |
# Create chunks that will be processed on the CPU | |
while (chunk_start < total_duration): | |
chunk_end = min(chunk_start + chunk_size, total_duration) | |
print("Parallel VAD: Executing chunk from " + str(chunk_start) + " to " + | |
str(chunk_end) + " on CPU device " + str(cpu_device_id)) | |
parameters.append([audio, config, chunk_start, chunk_end]); | |
cpu_device_id += 1 | |
chunk_start = chunk_end | |
created_context = False | |
# Spawn a separate process for each device | |
try: | |
if (cpu_parallel_context is None): | |
cpu_parallel_context = ParallelContext(cpu_device_count) | |
created_context = True | |
# Get a pool of processes | |
pool = cpu_parallel_context.get_pool() | |
# Run the transcription in parallel. Note that transcription must be picklable. | |
results = pool.starmap(transcription.get_transcribe_timestamps, parameters) | |
timestamps = [] | |
# Flatten the results | |
for result in results: | |
timestamps.extend(result) | |
merged = transcription.get_merged_timestamps(timestamps, config, total_duration) | |
perf_end_time = time.perf_counter() | |
print("Parallel VAD processing took {} seconds".format(perf_end_time - perf_start_time)) | |
return merged | |
finally: | |
# Return the pool to the context | |
if (cpu_parallel_context is not None): | |
cpu_parallel_context.return_pool(pool) | |
# Always close the context if we created it | |
if (created_context): | |
cpu_parallel_context.close() | |
def get_transcribe_timestamps(self, audio: str, config: ParallelTranscriptionConfig, start_time: float, duration: float): | |
return [] | |
def get_merged_timestamps(self, timestamps: List[Dict[str, Any]], config: ParallelTranscriptionConfig, total_duration: float): | |
# Override timestamps that will be processed | |
if (config.override_timestamps is not None): | |
print("Using override timestamps of size " + str(len(config.override_timestamps))) | |
return config.override_timestamps | |
return super().get_merged_timestamps(timestamps, config, total_duration) | |
def transcribe(self, audio: str, whisperCallable: WhisperCallback, config: ParallelTranscriptionConfig): | |
# Override device ID the first time | |
if (os.environ.get("INITIALIZED", None) is None): | |
os.environ["INITIALIZED"] = "1" | |
# Note that this may be None if the user didn't specify a device. In that case, Whisper will | |
# just use the default GPU device. | |
if (config.device_id is not None): | |
print("Using device " + config.device_id) | |
os.environ["CUDA_VISIBLE_DEVICES"] = config.device_id | |
return super().transcribe(audio, whisperCallable, config) | |
def _split(self, a, n): | |
"""Split a list into n approximately equal parts.""" | |
k, m = divmod(len(a), n) | |
return (a[i*k+min(i, m):(i+1)*k+min(i+1, m)] for i in range(n)) | |