ZephyruSalsify commited on
Commit
308a572
1 Parent(s): c901c38

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -43
app.py DELETED
@@ -1,43 +0,0 @@
1
- import streamlit as st
2
- from transformers import pipeline
3
-
4
- access = "hf_"
5
- token = "hhbFNpjKohezoexWMlyPUpvJQLWlaFhJaa"
6
-
7
- # Load the text classification model pipeline
8
- analysis = pipeline("text-classification", model='ZephyruSalsify/FinNews_SentimentAnalysis_v3')
9
- classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification", token=access+token)
10
-
11
- st.set_page_config(page_title="Financial News Analysis", page_icon="♕")
12
-
13
- # Streamlit application layout
14
- st.title("Financial News Analysis")
15
- st.write("Analyze corresponding Topic and Trend for Financial News!")
16
- st.image("./Fin.jpg", use_column_width = True)
17
-
18
- # Text input for user to enter the text
19
- text = st.text_area("Enter the Financial News", "")
20
-
21
- # Perform text classification when the user clicks the "Classify" button
22
- if st.button("Analyze"):
23
-
24
- label_1 = ""
25
- score_1 = 0.0
26
- label_2 = ""
27
- score_2 = 0.0
28
-
29
- # Perform text analysis on the input text
30
- results_1 = analysis(text)[0]
31
- results_2 = classification(text)[0]
32
-
33
- label_1 = results_1["label"]
34
- score_1 = results_1["score"]
35
- label_2 = results_2["label"]
36
- score_2 = results_2["score"]
37
-
38
- st.write("Financial Text:", text)
39
- st.write("Trend:", label_1)
40
- st.write("Trend_Score:", score_1)
41
-
42
- st.write("Finance Topic:", label_2)
43
- st.write("Topic_Score:", score_2)