ZephyruSalsify commited on
Commit
0d35448
1 Parent(s): eb8b0c1

Upload app (1).py

Browse files
Files changed (1) hide show
  1. app (1).py +44 -0
app (1).py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+
4
+ def analyze_financial_news():
5
+ access = "hf_"
6
+ token = "hhbFNpjKohezoexWMlyPUpvJQLWlaFhJaa"
7
+
8
+ # Load the text classification model and finetuned model pipeline
9
+ classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification", token=access+token)
10
+ sentiment_analysis = pipeline("text-classification", model="JoanParanoid/FinNews_SentimentAnalysis_v2")
11
+
12
+ st.set_page_config(page_title="Energy/Oil-Related Financial News Sentiment Analysis", page_icon="♕")
13
+
14
+ # Streamlit application layout
15
+ st.title("Energy/Oil-Related Financial News Sentiment Analysis")
16
+ st.write("Conduct Sentiment Analysis for Energy/Oil-Related Financial News to Find Out the Trend In Energy/Oil Industry and Make Wise Decisions!")
17
+ st.image("./Fin.jpg", use_column_width=True)
18
+
19
+ # Text input for user to enter the text
20
+ text = st.text_area("Enter the Financial News Content", "")
21
+
22
+ analyze_clicked = st.button("Analyze")
23
+
24
+ if analyze_clicked:
25
+ # Perform text classification on the input text
26
+ results = classification(text)[0]
27
+
28
+ # Check if the classification is "Energy | Oil"
29
+ if results["label"] == "Energy | Oil":
30
+ # If the news is related to Energy | Oil, perform sentiment analysis
31
+ sentiment_results = sentiment_analysis(text)[0]
32
+
33
+ # Display the sentiment analysis result
34
+ st.write("This financial news belongs to the 'Energy | Oil' category.")
35
+ st.write("Sentiment:", sentiment_results["label"])
36
+ st.write("Sentiment Score:", sentiment_results["score"])
37
+ else:
38
+ st.write("This financial news does not belong to the 'Energy | Oil' category. Please enter a relevant news article.")
39
+
40
+ def main():
41
+ analyze_financial_news()
42
+
43
+ if __name__ == "__main__":
44
+ main()