Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import pipeline | |
access = "hf_" | |
token = "hhbFNpjKohezoexWMlyPUpvJQLWlaFhJaa" | |
def main(): | |
# Load the text classification model pipeline | |
analysis = pipeline("text-classification", model='ZephyruSalsify/FinNews_SentimentAnalysis') | |
classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification", token=access+token) | |
st.set_page_config(page_title="Financial News Analysis", page_icon="♕") | |
# Streamlit application layout | |
st.title("Financial News Analysis") | |
st.write("Analyze corresponding Topic and Trend for Financial News!") | |
st.image("./Fin.jpg", use_column_width = True) | |
# Text input for user to enter the text | |
text = st.text_area("Enter the Financial News", "") | |
# Perform text classification when the user clicks the "Classify" button | |
if st.button("Analyze"): | |
label_1 = "" | |
score_1 = 0.0 | |
label_2 = "" | |
score_2 = 0.0 | |
# Perform text analysis on the input text | |
results_1 = analysis(text)[0] | |
results_2 = classification(text)[0] | |
label_1 = results_1["label"] | |
score_1 = results_1["score"] | |
label_2 = results_2["label"] | |
score_2 = results_2["score"] | |
st.write("Financial Text:", text) | |
st.write("Trend:", label_1) | |
st.write("Trend_Score:", score_1) | |
st.write("Finance Topic:", label_2) | |
st.write("Topic_Score:", score_2) | |
if_name_== "_main_": | |
main() |