Spaces:
Build error
Build error
import streamlit as st | |
from transformers import pipeline | |
access = "hf_" | |
token = "hhbFNpjKohezoexWMlyPUpvJQLWlaFhJaa" | |
# Load the text classification model pipeline | |
analysis = pipeline("text-classification", model='ZephyruSalsify/FinNews_SentimentAnalysis') | |
classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification", token=access+token) | |
st.set_page_config(page_title="Financial News Analysis", page_icon="♕") | |
# Streamlit application layout | |
st.title("Financial News Analysis") | |
st.write("Analyze corresponding Topic and Trend for Financial News!") | |
st.image("./Fin.jpg", use_column_width = True) | |
# Text input for user to enter the text | |
text = st.text_area("Enter the Financial News", "") | |
# Perform text classification when the user clicks the "Classify" button | |
if st.button("Analyze"): | |
# Perform text analysis on the input text | |
results_1 = analysis(text)[0] | |
results_2 = classification(text)[0] | |
# Display the analysis result | |
#max_score_1 = float('-inf') | |
#max_label_1 = '' | |
#for result_1 in results_1: | |
# if result_1['score'] > max_score_1: | |
# max_score_1 = result_1['score'] | |
# max_label_1 = result_1['label'] | |
# Display the classification result | |
#max_score_2 = float('-inf') | |
#max_label_2 = '' | |
#for result_2 in results_2: | |
# if result_2['score'] > max_score_2: | |
# max_score_2 = result_2['score'] | |
# max_label_2 = result_2['label'] | |
st.write("Financial Text:", text) | |
st.write("Trend:", results_1["label"]) | |
st.write("Trend_Score:", results_1["score"]) | |
st.write("Finance Topic:", results_2["label"]) | |
st.write("Topic_Score:", results_2["score"]) |