Spaces:
Running
Running
import streamlit as st | |
from datasets import load_dataset | |
from transformers import pipeline | |
import requests | |
# Load necessary datasets from Hugging Face | |
ds_natural_questions = load_dataset("google-research-datasets/natural_questions", "default") | |
ds_open_questions = load_dataset("launch/open_question_type") | |
ds_question_generator = load_dataset("iarfmoose/question_generator") | |
ds_jobs = load_dataset("lukebarousse/data_jobs") | |
ds_courses = load_dataset("azrai99/coursera-course-dataset") | |
universities_url = "https://www.4icu.org/top-universities-world/" | |
# Initialize the LLaMA model pipeline for text-to-text generation | |
qa_pipeline = pipeline("text2text-generation", model="llama-3.1-70b-versatile", tokenizer="llama-3.1-70b-versatile") | |
# Streamlit App Interface | |
st.title("Career Counseling Application") | |
st.subheader("Build Your Profile and Discover Tailored Career Recommendations") | |
# Sidebar for Profile Setup | |
st.sidebar.header("Profile Setup") | |
educational_background = st.sidebar.text_input("Educational Background (e.g., Degree, Major)") | |
interests = st.sidebar.text_input("Interests (e.g., AI, Data Science, Engineering)") | |
tech_skills = st.sidebar.text_area("Technical Skills (e.g., Python, SQL, Machine Learning)") | |
soft_skills = st.sidebar.text_area("Soft Skills (e.g., Communication, Teamwork)") | |
# Save profile data for session-based recommendations | |
profile_data = { | |
"educational_background": educational_background, | |
"interests": interests, | |
"tech_skills": tech_skills, | |
"soft_skills": soft_skills | |
} | |
if st.sidebar.button("Save Profile"): | |
st.session_state.profile_data = profile_data | |
st.sidebar.success("Profile saved successfully!") | |
# Intelligent Q&A Section | |
st.header("Intelligent Q&A") | |
question = st.text_input("Ask a career-related question:") | |
if question: | |
answer = qa_pipeline(question)[0]["generated_text"] | |
st.write("Answer:", answer) | |
# Career and Job Recommendations Section | |
st.header("Career and Job Recommendations") | |
if profile_data: | |
job_recommendations = [] | |
for job in ds_jobs["train"]: | |
if any(skill.lower() in job["description"].lower() for skill in tech_skills.split(',')): | |
job_recommendations.append(job["title"]) | |
if job_recommendations: | |
st.subheader("Job Recommendations") | |
st.write("Based on your profile, here are some potential job roles:") | |
for job in job_recommendations[:5]: # Limit to top 5 job recommendations | |
st.write("- ", job) | |
else: | |
st.write("No specific job recommendations found matching your profile.") | |
# Course Suggestions Section | |
st.header("Course Suggestions") | |
if profile_data: | |
course_recommendations = [] | |
for course in ds_courses["train"]: | |
if any(interest.lower() in course["title"].lower() for interest in interests.split(',')): | |
course_recommendations.append(course["title"]) | |
if course_recommendations: | |
st.subheader("Recommended Courses") | |
st.write("Here are some courses related to your interests:") | |
for course in course_recommendations[:5]: # Limit to top 5 course recommendations | |
st.write("- ", course) | |
else: | |
st.write("No specific courses found matching your interests.") | |
# University Recommendations Section | |
st.header("Top Universities") | |
st.write("For further education, you can explore the top universities worldwide:") | |
st.write(f"[View Top Universities Rankings]({universities_url})") | |
# Conclusion | |
st.write("Thank you for using the Career Counseling Application!") | |