import logging import random import torch from torch.cuda.amp import autocast as autocast import torch.nn as nn from minigpt4.common.registry import registry from minigpt4.models.base_model import disabled_train from minigpt4.models.minigpt_base import MiniGPTBase from minigpt4.models.Qformer import BertConfig, BertLMHeadModel @registry.register_model("minigpt_v2") class MiniGPTv2(MiniGPTBase): """ MiniGPT-v2 model """ PRETRAINED_MODEL_CONFIG_DICT = { "pretrain": "configs/models/minigpt_v2.yaml", } def __init__( self, vit_model="eva_clip_g", img_size=448, drop_path_rate=0, use_grad_checkpoint=False, vit_precision="fp16", freeze_vit=True, llama_model="", prompt_template='[INST] {} [/INST]', max_txt_len=300, end_sym='\n', lora_r=64, lora_target_modules=["q_proj", "v_proj"], lora_alpha=16, lora_dropout=0.05, chat_template=False, use_grad_checkpoint_llm=False, max_context_len=3800, low_resource=False, # use 8 bit and put vit in cpu device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore. ): # lora_target_modules = ["q_proj", "v_proj"] # lora_r=128 super().__init__( vit_model=vit_model, img_size=img_size, drop_path_rate=drop_path_rate, use_grad_checkpoint=use_grad_checkpoint, vit_precision=vit_precision, freeze_vit=freeze_vit, llama_model=llama_model, max_txt_len=max_txt_len, max_context_len=max_context_len, end_sym=end_sym, prompt_template=prompt_template, low_resource=low_resource, device_8bit=device_8bit, lora_r=lora_r, lora_target_modules=lora_target_modules, lora_alpha=lora_alpha, lora_dropout=lora_dropout, ) img_f_dim = self.visual_encoder.num_features * 4 self.llama_proj = nn.Linear( img_f_dim, self.llama_model.config.hidden_size ) self.feats_llama_proj1 = nn.Linear( 1024, self.llama_model.config.hidden_size ) self.feats_llama_proj2 = nn.Linear( 1024, self.llama_model.config.hidden_size ) self.feats_llama_proj3 = nn.Linear( 1024, self.llama_model.config.hidden_size ) self.cls_tk_llama_proj = nn.Linear( 1408, self.llama_model.config.hidden_size ) self.chat_template = chat_template if use_grad_checkpoint_llm: self.llama_model.gradient_checkpointing_enable() def encode_img(self, image, video_features): # device = 'cuda:0' device = image.device if len(image.shape) > 4: image = image.reshape(-1, *image.shape[-3:]) with self.maybe_autocast(): image_feats = self.visual_encoder(image) # [1, 1025, 1408] image_embeds = self.ln_vision(image_feats).to(device) # [1, 1025, 1408] image_cls_tk = image_embeds[:, :1, :] # [1, 1, 1408] cls_tk_feats = self.cls_tk_llama_proj(image_cls_tk) # [1, 1, 4096] image_embeds = image_embeds[:, 1:, :] # [1, 1024, 1408] bs, pn, hs = image_embeds.shape image_embeds = image_embeds.view(bs, int(pn / 4), int(hs * 4)) # [1, 256, 5632] image_inputs_llama = self.llama_proj(image_embeds) # [1, 256, 4096] video_features = video_features.to(device) # [1, 3, 1024] video_features_split = torch.split(video_features, 1, dim=1) output1 = self.feats_llama_proj1(video_features_split[0].squeeze(1)) output2 = self.feats_llama_proj2(video_features_split[1].squeeze(1)) output3 = self.feats_llama_proj3(video_features_split[2].squeeze(1)) video_feats = torch.stack([output1, output2, output3], dim=1) inputs_llama = torch.cat((image_inputs_llama, video_feats, cls_tk_feats), dim=1) # cls_tk_feats # inputs_llama = torch.cat((image_inputs_llama, video_feats), dim=1) atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device) return inputs_llama, atts_llama @classmethod def from_config(cls, cfg): vit_model = cfg.get("vit_model", "eva_clip_g") img_size = cfg.get("image_size") llama_model = cfg.get("llama_model") drop_path_rate = cfg.get("drop_path_rate", 0) use_grad_checkpoint = cfg.get("use_grad_checkpoint", False) vit_precision = cfg.get("vit_precision", "fp16") freeze_vit = cfg.get("freeze_vit", True) low_resource = cfg.get("low_resource", False) prompt_template = cfg.get("prompt_template", '[INST] {} [/INST]') max_txt_len = cfg.get("max_txt_len", 300) end_sym = cfg.get("end_sym", '\n') lora_r = cfg.get("lora_r", 64) lora_alpha = cfg.get("lora_alpha", 16) chat_template = cfg.get("chat_template", False) use_grad_checkpoint_llm = cfg.get("use_grad_checkpoint_llm", False) max_context_len = cfg.get("max_context_len", 3800) model = cls( vit_model=vit_model, img_size=img_size, drop_path_rate=drop_path_rate, use_grad_checkpoint=use_grad_checkpoint, vit_precision=vit_precision, freeze_vit=freeze_vit, llama_model=llama_model, prompt_template=prompt_template, max_txt_len=max_txt_len, low_resource=low_resource, end_sym=end_sym, lora_r=lora_r, lora_alpha=lora_alpha, chat_template=chat_template, use_grad_checkpoint_llm=use_grad_checkpoint_llm, max_context_len=max_context_len, ) ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4 if ckpt_path: print("Load Minigpt-4-LLM Checkpoint: {}".format(ckpt_path)) ckpt = torch.load(ckpt_path, map_location="cpu") msg = model.load_state_dict(ckpt['model'], strict=False) return model