Spaces:
Running
on
A10G
Running
on
A10G
Commit
·
691ef95
1
Parent(s):
e266a77
runners
Browse files- minigpt4/__init__.py +31 -0
- minigpt4/runners/__init__.py +10 -0
- minigpt4/runners/__pycache__/__init__.cpython-39.pyc +0 -0
- minigpt4/runners/__pycache__/runner_base.cpython-39.pyc +0 -0
- minigpt4/runners/runner_base.py +665 -0
- minigpt4/tasks/__init__.py +26 -0
- minigpt4/tasks/__pycache__/__init__.cpython-39.pyc +0 -0
- minigpt4/tasks/__pycache__/base_task.cpython-39.pyc +0 -0
- minigpt4/tasks/__pycache__/image_text_pretrain.cpython-39.pyc +0 -0
- minigpt4/tasks/base_task.py +315 -0
- minigpt4/tasks/image_text_pretrain.py +19 -0
minigpt4/__init__.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
|
11 |
+
from omegaconf import OmegaConf
|
12 |
+
|
13 |
+
from minigpt4.common.registry import registry
|
14 |
+
|
15 |
+
from minigpt4.datasets.builders import *
|
16 |
+
from minigpt4.models import *
|
17 |
+
from minigpt4.processors import *
|
18 |
+
from minigpt4.tasks import *
|
19 |
+
|
20 |
+
|
21 |
+
root_dir = os.path.dirname(os.path.abspath(__file__))
|
22 |
+
default_cfg = OmegaConf.load(os.path.join(root_dir, "configs/default.yaml"))
|
23 |
+
|
24 |
+
registry.register_path("library_root", root_dir)
|
25 |
+
repo_root = os.path.join(root_dir, "..")
|
26 |
+
registry.register_path("repo_root", repo_root)
|
27 |
+
cache_root = os.path.join(repo_root, default_cfg.env.cache_root)
|
28 |
+
registry.register_path("cache_root", cache_root)
|
29 |
+
|
30 |
+
registry.register("MAX_INT", sys.maxsize)
|
31 |
+
registry.register("SPLIT_NAMES", ["train", "val", "test"])
|
minigpt4/runners/__init__.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
from minigpt4.runners.runner_base import RunnerBase
|
9 |
+
|
10 |
+
__all__ = ["RunnerBase"]
|
minigpt4/runners/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (473 Bytes). View file
|
|
minigpt4/runners/__pycache__/runner_base.cpython-39.pyc
ADDED
Binary file (17.6 kB). View file
|
|
minigpt4/runners/runner_base.py
ADDED
@@ -0,0 +1,665 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
import datetime
|
9 |
+
import json
|
10 |
+
import logging
|
11 |
+
import os
|
12 |
+
import time
|
13 |
+
from pathlib import Path
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.distributed as dist
|
17 |
+
import webdataset as wds
|
18 |
+
from minigpt4.common.dist_utils import (
|
19 |
+
download_cached_file,
|
20 |
+
get_rank,
|
21 |
+
get_world_size,
|
22 |
+
is_main_process,
|
23 |
+
main_process,
|
24 |
+
)
|
25 |
+
from minigpt4.common.registry import registry
|
26 |
+
from minigpt4.common.utils import is_url
|
27 |
+
from minigpt4.datasets.data_utils import concat_datasets, reorg_datasets_by_split, ChainDataset
|
28 |
+
from minigpt4.datasets.datasets.dataloader_utils import (
|
29 |
+
IterLoader,
|
30 |
+
MultiIterLoader,
|
31 |
+
PrefetchLoader,
|
32 |
+
)
|
33 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
34 |
+
from torch.utils.data import DataLoader, DistributedSampler
|
35 |
+
|
36 |
+
|
37 |
+
@registry.register_runner("runner_base")
|
38 |
+
class RunnerBase:
|
39 |
+
"""
|
40 |
+
A runner class to train and evaluate a model given a task and datasets.
|
41 |
+
|
42 |
+
The runner uses pytorch distributed data parallel by default. Future release
|
43 |
+
will support other distributed frameworks.
|
44 |
+
"""
|
45 |
+
|
46 |
+
def __init__(self, cfg, task, model, datasets, job_id):
|
47 |
+
self.config = cfg
|
48 |
+
self.job_id = job_id
|
49 |
+
|
50 |
+
self.task = task
|
51 |
+
self.datasets = datasets
|
52 |
+
|
53 |
+
self._model = model
|
54 |
+
|
55 |
+
self._wrapped_model = None
|
56 |
+
self._device = None
|
57 |
+
self._optimizer = None
|
58 |
+
self._scaler = None
|
59 |
+
self._dataloaders = None
|
60 |
+
self._lr_sched = None
|
61 |
+
|
62 |
+
self.start_epoch = 0
|
63 |
+
|
64 |
+
# self.setup_seeds()
|
65 |
+
self.setup_output_dir()
|
66 |
+
|
67 |
+
@property
|
68 |
+
def device(self):
|
69 |
+
if self._device is None:
|
70 |
+
self._device = torch.device(self.config.run_cfg.device)
|
71 |
+
|
72 |
+
return self._device
|
73 |
+
|
74 |
+
@property
|
75 |
+
def use_distributed(self):
|
76 |
+
return self.config.run_cfg.distributed
|
77 |
+
|
78 |
+
@property
|
79 |
+
def model(self):
|
80 |
+
"""
|
81 |
+
A property to get the DDP-wrapped model on the device.
|
82 |
+
"""
|
83 |
+
# move model to device
|
84 |
+
if self._model.device != self.device:
|
85 |
+
self._model = self._model.to(self.device)
|
86 |
+
|
87 |
+
# distributed training wrapper
|
88 |
+
if self.use_distributed:
|
89 |
+
if self._wrapped_model is None:
|
90 |
+
self._wrapped_model = DDP(
|
91 |
+
self._model, device_ids=[self.config.run_cfg.gpu], find_unused_parameters=True
|
92 |
+
)
|
93 |
+
else:
|
94 |
+
self._wrapped_model = self._model
|
95 |
+
|
96 |
+
return self._wrapped_model
|
97 |
+
|
98 |
+
@property
|
99 |
+
def optimizer(self):
|
100 |
+
# TODO make optimizer class and configurations
|
101 |
+
if self._optimizer is None:
|
102 |
+
num_parameters = 0
|
103 |
+
p_wd, p_non_wd = [], []
|
104 |
+
attention = []
|
105 |
+
for n, p in self.model.named_parameters():
|
106 |
+
if not p.requires_grad:
|
107 |
+
continue # frozen weights
|
108 |
+
print(n)
|
109 |
+
if p.ndim < 2 or "bias" in n or "ln" in n or "bn" in n:
|
110 |
+
p_non_wd.append(p)
|
111 |
+
else:
|
112 |
+
p_wd.append(p)
|
113 |
+
num_parameters += p.data.nelement()
|
114 |
+
|
115 |
+
logging.info("number of trainable parameters: %d" % num_parameters)
|
116 |
+
optim_params = [
|
117 |
+
{
|
118 |
+
"params": p_wd,
|
119 |
+
"weight_decay": float(self.config.run_cfg.weight_decay),
|
120 |
+
"lr": float(self.config.run_cfg.init_lr)
|
121 |
+
},
|
122 |
+
{"params": p_non_wd, "weight_decay": 0, "lr": float(self.config.run_cfg.init_lr)},
|
123 |
+
]
|
124 |
+
|
125 |
+
beta2 = self.config.run_cfg.get("beta2", 0.999)
|
126 |
+
self._optimizer = torch.optim.AdamW(
|
127 |
+
optim_params,
|
128 |
+
lr=float(self.config.run_cfg.init_lr),
|
129 |
+
weight_decay=float(self.config.run_cfg.weight_decay),
|
130 |
+
betas=(0.9, beta2),
|
131 |
+
)
|
132 |
+
|
133 |
+
return self._optimizer
|
134 |
+
|
135 |
+
@property
|
136 |
+
def scaler(self):
|
137 |
+
amp = self.config.run_cfg.get("amp", False)
|
138 |
+
|
139 |
+
if amp:
|
140 |
+
if self._scaler is None:
|
141 |
+
self._scaler = torch.cuda.amp.GradScaler()
|
142 |
+
|
143 |
+
return self._scaler
|
144 |
+
|
145 |
+
@property
|
146 |
+
def lr_scheduler(self):
|
147 |
+
"""
|
148 |
+
A property to get and create learning rate scheduler by split just in need.
|
149 |
+
"""
|
150 |
+
if self._lr_sched is None:
|
151 |
+
lr_sched_cls = registry.get_lr_scheduler_class(self.config.run_cfg.lr_sched)
|
152 |
+
|
153 |
+
# max_epoch = self.config.run_cfg.max_epoch
|
154 |
+
max_epoch = self.max_epoch
|
155 |
+
# min_lr = self.config.run_cfg.min_lr
|
156 |
+
min_lr = self.min_lr
|
157 |
+
# init_lr = self.config.run_cfg.init_lr
|
158 |
+
init_lr = self.init_lr
|
159 |
+
|
160 |
+
# optional parameters
|
161 |
+
decay_rate = self.config.run_cfg.get("lr_decay_rate", None)
|
162 |
+
warmup_start_lr = self.config.run_cfg.get("warmup_lr", -1)
|
163 |
+
warmup_steps = self.config.run_cfg.get("warmup_steps", 0)
|
164 |
+
iters_per_epoch = self.config.run_cfg.get("iters_per_epoch", None)
|
165 |
+
|
166 |
+
if iters_per_epoch is None:
|
167 |
+
try:
|
168 |
+
iters_per_epoch = len(self.dataloaders['train'])
|
169 |
+
except (AttributeError, TypeError):
|
170 |
+
iters_per_epoch = 10000
|
171 |
+
|
172 |
+
self._lr_sched = lr_sched_cls(
|
173 |
+
optimizer=self.optimizer,
|
174 |
+
max_epoch=max_epoch,
|
175 |
+
iters_per_epoch=iters_per_epoch,
|
176 |
+
min_lr=min_lr,
|
177 |
+
init_lr=init_lr,
|
178 |
+
decay_rate=decay_rate,
|
179 |
+
warmup_start_lr=warmup_start_lr,
|
180 |
+
warmup_steps=warmup_steps,
|
181 |
+
)
|
182 |
+
|
183 |
+
return self._lr_sched
|
184 |
+
|
185 |
+
@property
|
186 |
+
def dataloaders(self) -> dict:
|
187 |
+
"""
|
188 |
+
A property to get and create dataloaders by split just in need.
|
189 |
+
|
190 |
+
If no train_dataset_ratio is provided, concatenate map-style datasets and
|
191 |
+
chain wds.DataPipe datasets separately. Training set becomes a tuple
|
192 |
+
(ConcatDataset, ChainDataset), both are optional but at least one of them is
|
193 |
+
required. The resultant ConcatDataset and ChainDataset will be sampled evenly.
|
194 |
+
|
195 |
+
If train_dataset_ratio is provided, create a MultiIterLoader to sample
|
196 |
+
each dataset by ratios during training.
|
197 |
+
|
198 |
+
Currently do not support multiple datasets for validation and test.
|
199 |
+
|
200 |
+
Returns:
|
201 |
+
dict: {split_name: (tuples of) dataloader}
|
202 |
+
"""
|
203 |
+
if self._dataloaders is None:
|
204 |
+
|
205 |
+
# concatenate map-style datasets and chain wds.DataPipe datasets separately
|
206 |
+
# training set becomes a tuple (ConcatDataset, ChainDataset), both are
|
207 |
+
# optional but at least one of them is required. The resultant ConcatDataset
|
208 |
+
# and ChainDataset will be sampled evenly.
|
209 |
+
logging.info(
|
210 |
+
"dataset_ratios not specified, datasets will be concatenated (map-style datasets) or chained (webdataset.DataPipeline)."
|
211 |
+
)
|
212 |
+
|
213 |
+
batch_sizes = {dataset_name: getattr(self.config.datasets_cfg, dataset_name).batch_size
|
214 |
+
for dataset_name in self.datasets.keys()}
|
215 |
+
datasets, batch_sizes = reorg_datasets_by_split(self.datasets, batch_sizes)
|
216 |
+
self.datasets = datasets
|
217 |
+
# self.datasets = concat_datasets(datasets)
|
218 |
+
|
219 |
+
# print dataset statistics after concatenation/chaining
|
220 |
+
for split_name in self.datasets:
|
221 |
+
if isinstance(self.datasets[split_name], tuple) or isinstance(
|
222 |
+
self.datasets[split_name], list
|
223 |
+
):
|
224 |
+
# mixed wds.DataPipeline and torch.utils.data.Dataset
|
225 |
+
num_records = sum(
|
226 |
+
[
|
227 |
+
len(d)
|
228 |
+
if not type(d) in [wds.DataPipeline, ChainDataset]
|
229 |
+
else 0
|
230 |
+
for d in self.datasets[split_name]
|
231 |
+
]
|
232 |
+
)
|
233 |
+
|
234 |
+
else:
|
235 |
+
if hasattr(self.datasets[split_name], "__len__"):
|
236 |
+
# a single map-style dataset
|
237 |
+
num_records = len(self.datasets[split_name])
|
238 |
+
else:
|
239 |
+
# a single wds.DataPipeline
|
240 |
+
num_records = -1
|
241 |
+
logging.info(
|
242 |
+
"Only a single wds.DataPipeline dataset, no __len__ attribute."
|
243 |
+
)
|
244 |
+
|
245 |
+
if num_records >= 0:
|
246 |
+
logging.info(
|
247 |
+
"Loaded {} records for {} split from the dataset.".format(
|
248 |
+
num_records, split_name
|
249 |
+
)
|
250 |
+
)
|
251 |
+
|
252 |
+
# create dataloaders
|
253 |
+
split_names = sorted(self.datasets.keys())
|
254 |
+
|
255 |
+
datasets = [self.datasets[split] for split in split_names]
|
256 |
+
batch_sizes = [batch_sizes[split] for split in split_names]
|
257 |
+
is_trains = [split in self.train_splits for split in split_names]
|
258 |
+
|
259 |
+
print("batch sizes", batch_sizes)
|
260 |
+
|
261 |
+
collate_fns = []
|
262 |
+
for dataset in datasets:
|
263 |
+
if isinstance(dataset, tuple) or isinstance(dataset, list):
|
264 |
+
collate_fns.append([getattr(d, "collater", None) for d in dataset])
|
265 |
+
else:
|
266 |
+
collate_fns.append(getattr(dataset, "collater", None))
|
267 |
+
|
268 |
+
dataloaders = self.create_loaders(
|
269 |
+
datasets=datasets,
|
270 |
+
num_workers=self.config.run_cfg.num_workers,
|
271 |
+
batch_sizes=batch_sizes,
|
272 |
+
is_trains=is_trains,
|
273 |
+
collate_fns=collate_fns,
|
274 |
+
)
|
275 |
+
|
276 |
+
self._dataloaders = {k: v for k, v in zip(split_names, dataloaders)}
|
277 |
+
|
278 |
+
return self._dataloaders
|
279 |
+
|
280 |
+
@property
|
281 |
+
def cuda_enabled(self):
|
282 |
+
return self.device.type == "cuda"
|
283 |
+
|
284 |
+
@property
|
285 |
+
def max_epoch(self):
|
286 |
+
return int(self.config.run_cfg.max_epoch)
|
287 |
+
|
288 |
+
@property
|
289 |
+
def log_freq(self):
|
290 |
+
log_freq = self.config.run_cfg.get("log_freq", 50)
|
291 |
+
return int(log_freq)
|
292 |
+
|
293 |
+
@property
|
294 |
+
def init_lr(self):
|
295 |
+
return float(self.config.run_cfg.init_lr)
|
296 |
+
|
297 |
+
@property
|
298 |
+
def min_lr(self):
|
299 |
+
return float(self.config.run_cfg.min_lr)
|
300 |
+
|
301 |
+
@property
|
302 |
+
def accum_grad_iters(self):
|
303 |
+
return int(self.config.run_cfg.get("accum_grad_iters", 1))
|
304 |
+
|
305 |
+
@property
|
306 |
+
def valid_splits(self):
|
307 |
+
valid_splits = self.config.run_cfg.get("valid_splits", [])
|
308 |
+
|
309 |
+
if len(valid_splits) == 0:
|
310 |
+
logging.info("No validation splits found.")
|
311 |
+
|
312 |
+
return valid_splits
|
313 |
+
|
314 |
+
@property
|
315 |
+
def test_splits(self):
|
316 |
+
test_splits = self.config.run_cfg.get("test_splits", [])
|
317 |
+
|
318 |
+
return test_splits
|
319 |
+
|
320 |
+
@property
|
321 |
+
def train_splits(self):
|
322 |
+
train_splits = self.config.run_cfg.get("train_splits", [])
|
323 |
+
|
324 |
+
if len(train_splits) == 0:
|
325 |
+
logging.info("Empty train splits.")
|
326 |
+
|
327 |
+
return train_splits
|
328 |
+
|
329 |
+
@property
|
330 |
+
def evaluate_only(self):
|
331 |
+
"""
|
332 |
+
Set to True to skip training.
|
333 |
+
"""
|
334 |
+
return self.config.run_cfg.evaluate
|
335 |
+
|
336 |
+
@property
|
337 |
+
def use_dist_eval_sampler(self):
|
338 |
+
return self.config.run_cfg.get("use_dist_eval_sampler", True)
|
339 |
+
|
340 |
+
@property
|
341 |
+
def resume_ckpt_path(self):
|
342 |
+
return self.config.run_cfg.get("resume_ckpt_path", None)
|
343 |
+
|
344 |
+
@property
|
345 |
+
def train_loader(self):
|
346 |
+
train_dataloader = self.dataloaders["train"]
|
347 |
+
|
348 |
+
return train_dataloader
|
349 |
+
|
350 |
+
def setup_output_dir(self):
|
351 |
+
lib_root = Path(registry.get_path("library_root"))
|
352 |
+
|
353 |
+
output_dir = lib_root / self.config.run_cfg.output_dir / self.job_id
|
354 |
+
# output_dir = lib_root / self.config.run_cfg.output_dir
|
355 |
+
result_dir = output_dir / "result"
|
356 |
+
|
357 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
358 |
+
result_dir.mkdir(parents=True, exist_ok=True)
|
359 |
+
|
360 |
+
registry.register_path("result_dir", str(result_dir))
|
361 |
+
registry.register_path("output_dir", str(output_dir))
|
362 |
+
|
363 |
+
self.result_dir = result_dir
|
364 |
+
self.output_dir = output_dir
|
365 |
+
|
366 |
+
def train(self):
|
367 |
+
start_time = time.time()
|
368 |
+
best_agg_metric = 0
|
369 |
+
best_epoch = 0
|
370 |
+
|
371 |
+
self.log_config()
|
372 |
+
|
373 |
+
# resume from checkpoint if specified
|
374 |
+
if not self.evaluate_only and self.resume_ckpt_path is not None:
|
375 |
+
self._load_checkpoint(self.resume_ckpt_path)
|
376 |
+
|
377 |
+
for cur_epoch in range(self.start_epoch, self.max_epoch):
|
378 |
+
# training phase
|
379 |
+
if not self.evaluate_only:
|
380 |
+
logging.info("Start training")
|
381 |
+
train_stats = self.train_epoch(cur_epoch)
|
382 |
+
self.log_stats(split_name="train", stats=train_stats)
|
383 |
+
|
384 |
+
# evaluation phase
|
385 |
+
if len(self.valid_splits) > 0:
|
386 |
+
for split_name in self.valid_splits:
|
387 |
+
logging.info("Evaluating on {}.".format(split_name))
|
388 |
+
|
389 |
+
val_log = self.eval_epoch(
|
390 |
+
split_name=split_name, cur_epoch=cur_epoch
|
391 |
+
)
|
392 |
+
if val_log is not None:
|
393 |
+
if is_main_process():
|
394 |
+
assert (
|
395 |
+
"agg_metrics" in val_log
|
396 |
+
), "No agg_metrics found in validation log."
|
397 |
+
|
398 |
+
agg_metrics = val_log["agg_metrics"]
|
399 |
+
if agg_metrics > best_agg_metric and split_name == "val":
|
400 |
+
best_epoch, best_agg_metric = cur_epoch, agg_metrics
|
401 |
+
|
402 |
+
self._save_checkpoint(cur_epoch, is_best=True)
|
403 |
+
|
404 |
+
val_log.update({"best_epoch": best_epoch})
|
405 |
+
self.log_stats(val_log, split_name)
|
406 |
+
|
407 |
+
else:
|
408 |
+
# if no validation split is provided, we just save the checkpoint at the end of each epoch.
|
409 |
+
if not self.evaluate_only:
|
410 |
+
self._save_checkpoint(cur_epoch, is_best=False)
|
411 |
+
|
412 |
+
if self.evaluate_only:
|
413 |
+
break
|
414 |
+
|
415 |
+
if self.config.run_cfg.distributed:
|
416 |
+
dist.barrier()
|
417 |
+
|
418 |
+
# testing phase
|
419 |
+
test_epoch = "best" if len(self.valid_splits) > 0 else cur_epoch
|
420 |
+
self.evaluate(cur_epoch=test_epoch, skip_reload=self.evaluate_only)
|
421 |
+
|
422 |
+
total_time = time.time() - start_time
|
423 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
424 |
+
logging.info("Training time {}".format(total_time_str))
|
425 |
+
|
426 |
+
def evaluate(self, cur_epoch="best", skip_reload=False):
|
427 |
+
test_logs = dict()
|
428 |
+
|
429 |
+
if len(self.test_splits) > 0:
|
430 |
+
for split_name in self.test_splits:
|
431 |
+
test_logs[split_name] = self.eval_epoch(
|
432 |
+
split_name=split_name, cur_epoch=cur_epoch, skip_reload=skip_reload
|
433 |
+
)
|
434 |
+
|
435 |
+
return test_logs
|
436 |
+
|
437 |
+
def train_epoch(self, epoch):
|
438 |
+
# train
|
439 |
+
self.model.train()
|
440 |
+
|
441 |
+
return self.task.train_epoch(
|
442 |
+
epoch=epoch,
|
443 |
+
model=self.model,
|
444 |
+
data_loader=self.train_loader,
|
445 |
+
optimizer=self.optimizer,
|
446 |
+
scaler=self.scaler,
|
447 |
+
lr_scheduler=self.lr_scheduler,
|
448 |
+
cuda_enabled=self.cuda_enabled,
|
449 |
+
log_freq=self.log_freq,
|
450 |
+
accum_grad_iters=self.accum_grad_iters,
|
451 |
+
)
|
452 |
+
|
453 |
+
@torch.no_grad()
|
454 |
+
def eval_epoch(self, split_name, cur_epoch, skip_reload=False):
|
455 |
+
"""
|
456 |
+
Evaluate the model on a given split.
|
457 |
+
|
458 |
+
Args:
|
459 |
+
split_name (str): name of the split to evaluate on.
|
460 |
+
cur_epoch (int): current epoch.
|
461 |
+
skip_reload_best (bool): whether to skip reloading the best checkpoint.
|
462 |
+
During training, we will reload the best checkpoint for validation.
|
463 |
+
During testing, we will use provided weights and skip reloading the best checkpoint .
|
464 |
+
"""
|
465 |
+
data_loader = self.dataloaders.get(split_name, None)
|
466 |
+
assert data_loader, "data_loader for split {} is None.".format(split_name)
|
467 |
+
|
468 |
+
# TODO In validation, you need to compute loss as well as metrics
|
469 |
+
# TODO consider moving to model.before_evaluation()
|
470 |
+
model = self.unwrap_dist_model(self.model)
|
471 |
+
if not skip_reload and cur_epoch == "best":
|
472 |
+
model = self._reload_best_model(model)
|
473 |
+
model.eval()
|
474 |
+
|
475 |
+
self.task.before_evaluation(
|
476 |
+
model=model,
|
477 |
+
dataset=self.datasets[split_name],
|
478 |
+
)
|
479 |
+
results = self.task.evaluation(model, data_loader)
|
480 |
+
|
481 |
+
if results is not None:
|
482 |
+
return self.task.after_evaluation(
|
483 |
+
val_result=results,
|
484 |
+
split_name=split_name,
|
485 |
+
epoch=cur_epoch,
|
486 |
+
)
|
487 |
+
|
488 |
+
def unwrap_dist_model(self, model):
|
489 |
+
if self.use_distributed:
|
490 |
+
return model.module
|
491 |
+
else:
|
492 |
+
return model
|
493 |
+
|
494 |
+
def create_loaders(
|
495 |
+
self,
|
496 |
+
datasets,
|
497 |
+
num_workers,
|
498 |
+
batch_sizes,
|
499 |
+
is_trains,
|
500 |
+
collate_fns,
|
501 |
+
dataset_ratios=None,
|
502 |
+
):
|
503 |
+
"""
|
504 |
+
Create dataloaders for training and validation.
|
505 |
+
"""
|
506 |
+
|
507 |
+
def _create_loader(dataset, num_workers, bsz, is_train, collate_fn):
|
508 |
+
# create a single dataloader for each split
|
509 |
+
if isinstance(dataset, ChainDataset) or isinstance(
|
510 |
+
dataset, wds.DataPipeline
|
511 |
+
):
|
512 |
+
# wds.WebdDataset instance are chained together
|
513 |
+
# webdataset.DataPipeline has its own sampler and collate_fn
|
514 |
+
loader = iter(
|
515 |
+
DataLoader(
|
516 |
+
dataset,
|
517 |
+
batch_size=bsz,
|
518 |
+
num_workers=num_workers,
|
519 |
+
pin_memory=True,
|
520 |
+
)
|
521 |
+
)
|
522 |
+
else:
|
523 |
+
# map-style dataset are concatenated together
|
524 |
+
# setup distributed sampler
|
525 |
+
|
526 |
+
if self.use_distributed:
|
527 |
+
sampler = DistributedSampler(
|
528 |
+
dataset,
|
529 |
+
shuffle=is_train,
|
530 |
+
num_replicas=get_world_size(),
|
531 |
+
rank=get_rank(),
|
532 |
+
)
|
533 |
+
if not self.use_dist_eval_sampler:
|
534 |
+
# e.g. retrieval evaluation
|
535 |
+
sampler = sampler if is_train else None
|
536 |
+
else:
|
537 |
+
sampler = None
|
538 |
+
|
539 |
+
loader = DataLoader(
|
540 |
+
dataset,
|
541 |
+
batch_size=bsz,
|
542 |
+
num_workers=num_workers,
|
543 |
+
pin_memory=True,
|
544 |
+
sampler=sampler,
|
545 |
+
shuffle=sampler is None and is_train,
|
546 |
+
collate_fn=collate_fn,
|
547 |
+
drop_last=True if is_train else False,
|
548 |
+
)
|
549 |
+
loader = PrefetchLoader(loader)
|
550 |
+
|
551 |
+
if is_train:
|
552 |
+
loader = IterLoader(loader, use_distributed=self.use_distributed)
|
553 |
+
|
554 |
+
return loader
|
555 |
+
|
556 |
+
loaders = []
|
557 |
+
|
558 |
+
for dataset, bsz, is_train, collate_fn in zip(
|
559 |
+
datasets, batch_sizes, is_trains, collate_fns
|
560 |
+
):
|
561 |
+
if isinstance(dataset, list) or isinstance(dataset, tuple):
|
562 |
+
if hasattr(dataset[0], 'sample_ratio') and dataset_ratios is None:
|
563 |
+
dataset_ratios = [d.sample_ratio for d in dataset]
|
564 |
+
loader = MultiIterLoader(
|
565 |
+
loaders=[
|
566 |
+
_create_loader(d, num_workers, bsz[i], is_train, collate_fn[i])
|
567 |
+
for i, d in enumerate(dataset)
|
568 |
+
],
|
569 |
+
ratios=dataset_ratios,
|
570 |
+
)
|
571 |
+
else:
|
572 |
+
loader = _create_loader(dataset, num_workers, bsz, is_train, collate_fn)
|
573 |
+
|
574 |
+
loaders.append(loader)
|
575 |
+
|
576 |
+
return loaders
|
577 |
+
|
578 |
+
@main_process
|
579 |
+
def _save_checkpoint(self, cur_epoch, is_best=False):
|
580 |
+
"""
|
581 |
+
Save the checkpoint at the current epoch.
|
582 |
+
"""
|
583 |
+
|
584 |
+
model_no_ddp = self.unwrap_dist_model(self.model)
|
585 |
+
param_grad_dic = {
|
586 |
+
k: v.requires_grad for (k, v) in model_no_ddp.named_parameters()
|
587 |
+
}
|
588 |
+
state_dict = model_no_ddp.state_dict()
|
589 |
+
for k in list(state_dict.keys()):
|
590 |
+
if k in param_grad_dic.keys() and not param_grad_dic[k]:
|
591 |
+
# delete parameters that do not require gradient
|
592 |
+
del state_dict[k]
|
593 |
+
|
594 |
+
save_obj = {
|
595 |
+
"model": state_dict,
|
596 |
+
"optimizer": self.optimizer.state_dict(),
|
597 |
+
"config": self.config.to_dict(),
|
598 |
+
"scaler": self.scaler.state_dict() if self.scaler else None,
|
599 |
+
"epoch": cur_epoch,
|
600 |
+
}
|
601 |
+
save_to = os.path.join(
|
602 |
+
self.output_dir,
|
603 |
+
"checkpoint_{}.pth".format("best" if is_best else cur_epoch),
|
604 |
+
)
|
605 |
+
logging.info("Saving checkpoint at epoch {} to {}.".format(cur_epoch, save_to))
|
606 |
+
torch.save(save_obj, save_to)
|
607 |
+
|
608 |
+
def _reload_best_model(self, model):
|
609 |
+
"""
|
610 |
+
Load the best checkpoint for evaluation.
|
611 |
+
"""
|
612 |
+
checkpoint_path = os.path.join(self.output_dir, "checkpoint_best.pth")
|
613 |
+
|
614 |
+
logging.info("Loading checkpoint from {}.".format(checkpoint_path))
|
615 |
+
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
616 |
+
try:
|
617 |
+
model.load_state_dict(checkpoint["model"])
|
618 |
+
except RuntimeError as e:
|
619 |
+
logging.warning(
|
620 |
+
"""
|
621 |
+
Key mismatch when loading checkpoint. This is expected if only part of the model is saved.
|
622 |
+
Trying to load the model with strict=False.
|
623 |
+
"""
|
624 |
+
)
|
625 |
+
model.load_state_dict(checkpoint["model"], strict=False)
|
626 |
+
return model
|
627 |
+
|
628 |
+
def _load_checkpoint(self, url_or_filename):
|
629 |
+
"""
|
630 |
+
Resume from a checkpoint.
|
631 |
+
"""
|
632 |
+
if is_url(url_or_filename):
|
633 |
+
cached_file = download_cached_file(
|
634 |
+
url_or_filename, check_hash=False, progress=True
|
635 |
+
)
|
636 |
+
checkpoint = torch.load(cached_file, map_location=self.device)
|
637 |
+
elif os.path.isfile(url_or_filename):
|
638 |
+
checkpoint = torch.load(url_or_filename, map_location=self.device)
|
639 |
+
else:
|
640 |
+
raise RuntimeError("checkpoint url or path is invalid")
|
641 |
+
|
642 |
+
state_dict = checkpoint["model"]
|
643 |
+
message = self.unwrap_dist_model(self.model).load_state_dict(state_dict,strict=False)
|
644 |
+
|
645 |
+
self.optimizer.load_state_dict(checkpoint["optimizer"])
|
646 |
+
if self.scaler and "scaler" in checkpoint:
|
647 |
+
self.scaler.load_state_dict(checkpoint["scaler"])
|
648 |
+
|
649 |
+
self.start_epoch = checkpoint["epoch"] + 1
|
650 |
+
print("resume the checkpoint")
|
651 |
+
logging.info("Resume checkpoint from {}".format(url_or_filename))
|
652 |
+
|
653 |
+
@main_process
|
654 |
+
def log_stats(self, stats, split_name):
|
655 |
+
if isinstance(stats, dict):
|
656 |
+
log_stats = {**{f"{split_name}_{k}": v for k, v in stats.items()}}
|
657 |
+
with open(os.path.join(self.output_dir, "log.txt"), "a") as f:
|
658 |
+
f.write(json.dumps(log_stats) + "\n")
|
659 |
+
elif isinstance(stats, list):
|
660 |
+
pass
|
661 |
+
|
662 |
+
@main_process
|
663 |
+
def log_config(self):
|
664 |
+
with open(os.path.join(self.output_dir, "log.txt"), "a") as f:
|
665 |
+
f.write(json.dumps(self.config.to_dict(), indent=4) + "\n")
|
minigpt4/tasks/__init__.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
from minigpt4.common.registry import registry
|
9 |
+
from minigpt4.tasks.base_task import BaseTask
|
10 |
+
from minigpt4.tasks.image_text_pretrain import ImageTextPretrainTask
|
11 |
+
|
12 |
+
|
13 |
+
def setup_task(cfg):
|
14 |
+
assert "task" in cfg.run_cfg, "Task name must be provided."
|
15 |
+
|
16 |
+
task_name = cfg.run_cfg.task
|
17 |
+
task = registry.get_task_class(task_name).setup_task(cfg=cfg)
|
18 |
+
assert task is not None, "Task {} not properly registered.".format(task_name)
|
19 |
+
|
20 |
+
return task
|
21 |
+
|
22 |
+
|
23 |
+
__all__ = [
|
24 |
+
"BaseTask",
|
25 |
+
"ImageTextPretrainTask",
|
26 |
+
]
|
minigpt4/tasks/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (931 Bytes). View file
|
|
minigpt4/tasks/__pycache__/base_task.cpython-39.pyc
ADDED
Binary file (7.54 kB). View file
|
|
minigpt4/tasks/__pycache__/image_text_pretrain.cpython-39.pyc
ADDED
Binary file (1.12 kB). View file
|
|
minigpt4/tasks/base_task.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
import logging
|
9 |
+
import os
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.distributed as dist
|
13 |
+
from minigpt4.common.dist_utils import get_rank, get_world_size, is_main_process, is_dist_avail_and_initialized
|
14 |
+
from minigpt4.common.logger import MetricLogger, SmoothedValue
|
15 |
+
from minigpt4.common.registry import registry
|
16 |
+
from minigpt4.datasets.data_utils import prepare_sample
|
17 |
+
import wandb
|
18 |
+
|
19 |
+
class BaseTask:
|
20 |
+
def __init__(self, **kwargs):
|
21 |
+
super().__init__()
|
22 |
+
|
23 |
+
self.inst_id_key = "instance_id"
|
24 |
+
self.cfg = ""
|
25 |
+
|
26 |
+
@classmethod
|
27 |
+
def setup_task(cls, **kwargs):
|
28 |
+
return cls()
|
29 |
+
|
30 |
+
def build_model(self, cfg):
|
31 |
+
self.cfg = cfg
|
32 |
+
model_config = cfg.model_cfg
|
33 |
+
|
34 |
+
model_cls = registry.get_model_class(model_config.arch)
|
35 |
+
return model_cls.from_config(model_config)
|
36 |
+
|
37 |
+
def build_datasets(self, cfg):
|
38 |
+
"""
|
39 |
+
Build a dictionary of datasets, keyed by split 'train', 'valid', 'test'.
|
40 |
+
Download dataset and annotations automatically if not exist.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
cfg (common.config.Config): _description_
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
dict: Dictionary of torch.utils.data.Dataset objects by split.
|
47 |
+
"""
|
48 |
+
|
49 |
+
datasets = dict()
|
50 |
+
|
51 |
+
datasets_config = cfg.datasets_cfg
|
52 |
+
|
53 |
+
assert len(datasets_config) > 0, "At least one dataset has to be specified."
|
54 |
+
|
55 |
+
for name in datasets_config:
|
56 |
+
dataset_config = datasets_config[name]
|
57 |
+
|
58 |
+
builder = registry.get_builder_class(name)(dataset_config)
|
59 |
+
dataset = builder.build_datasets()
|
60 |
+
|
61 |
+
dataset['train'].name = name
|
62 |
+
if 'sample_ratio' in dataset_config:
|
63 |
+
dataset['train'].sample_ratio = dataset_config.sample_ratio
|
64 |
+
|
65 |
+
datasets[name] = dataset
|
66 |
+
|
67 |
+
return datasets
|
68 |
+
|
69 |
+
def train_step(self, model, samples):
|
70 |
+
outputs = model(samples)
|
71 |
+
# loss = outputs["loss"] + outputs["emos_loss"]
|
72 |
+
loss = outputs["emos_loss"]
|
73 |
+
# print(outputs["loss"], outputs["emos_loss"], torch.argmax(outputs['emos_pred'], dim=1), outputs["emotion"])
|
74 |
+
|
75 |
+
return loss
|
76 |
+
|
77 |
+
def valid_step(self, model, samples):
|
78 |
+
raise NotImplementedError
|
79 |
+
|
80 |
+
def before_evaluation(self, model, dataset, **kwargs):
|
81 |
+
model.before_evaluation(dataset=dataset, task_type=type(self))
|
82 |
+
|
83 |
+
def after_evaluation(self, **kwargs):
|
84 |
+
pass
|
85 |
+
|
86 |
+
def inference_step(self):
|
87 |
+
raise NotImplementedError
|
88 |
+
|
89 |
+
def evaluation(self, model, data_loader, cuda_enabled=True):
|
90 |
+
metric_logger = MetricLogger(delimiter=" ")
|
91 |
+
header = "Evaluation"
|
92 |
+
# TODO make it configurable
|
93 |
+
print_freq = 10
|
94 |
+
|
95 |
+
results = []
|
96 |
+
|
97 |
+
for samples in metric_logger.log_every(data_loader, print_freq, header):
|
98 |
+
samples = prepare_sample(samples, cuda_enabled=cuda_enabled)
|
99 |
+
|
100 |
+
eval_output = self.valid_step(model=model, samples=samples)
|
101 |
+
results.extend(eval_output)
|
102 |
+
|
103 |
+
if is_dist_avail_and_initialized():
|
104 |
+
dist.barrier()
|
105 |
+
|
106 |
+
return results
|
107 |
+
|
108 |
+
def train_epoch(
|
109 |
+
self,
|
110 |
+
epoch,
|
111 |
+
model,
|
112 |
+
data_loader,
|
113 |
+
optimizer,
|
114 |
+
lr_scheduler,
|
115 |
+
scaler=None,
|
116 |
+
cuda_enabled=False,
|
117 |
+
log_freq=50,
|
118 |
+
accum_grad_iters=1,
|
119 |
+
):
|
120 |
+
return self._train_inner_loop(
|
121 |
+
epoch=epoch,
|
122 |
+
iters_per_epoch=lr_scheduler.iters_per_epoch,
|
123 |
+
model=model,
|
124 |
+
data_loader=data_loader,
|
125 |
+
optimizer=optimizer,
|
126 |
+
scaler=scaler,
|
127 |
+
lr_scheduler=lr_scheduler,
|
128 |
+
log_freq=log_freq,
|
129 |
+
cuda_enabled=cuda_enabled,
|
130 |
+
accum_grad_iters=accum_grad_iters,
|
131 |
+
)
|
132 |
+
|
133 |
+
def train_iters(
|
134 |
+
self,
|
135 |
+
epoch,
|
136 |
+
start_iters,
|
137 |
+
iters_per_inner_epoch,
|
138 |
+
model,
|
139 |
+
data_loader,
|
140 |
+
optimizer,
|
141 |
+
lr_scheduler,
|
142 |
+
scaler=None,
|
143 |
+
cuda_enabled=False,
|
144 |
+
log_freq=50,
|
145 |
+
accum_grad_iters=1,
|
146 |
+
):
|
147 |
+
return self._train_inner_loop(
|
148 |
+
epoch=epoch,
|
149 |
+
start_iters=start_iters,
|
150 |
+
iters_per_epoch=iters_per_inner_epoch,
|
151 |
+
model=model,
|
152 |
+
data_loader=data_loader,
|
153 |
+
optimizer=optimizer,
|
154 |
+
scaler=scaler,
|
155 |
+
lr_scheduler=lr_scheduler,
|
156 |
+
log_freq=log_freq,
|
157 |
+
cuda_enabled=cuda_enabled,
|
158 |
+
accum_grad_iters=accum_grad_iters,
|
159 |
+
)
|
160 |
+
|
161 |
+
def _train_inner_loop(
|
162 |
+
self,
|
163 |
+
epoch,
|
164 |
+
iters_per_epoch,
|
165 |
+
model,
|
166 |
+
data_loader,
|
167 |
+
optimizer,
|
168 |
+
lr_scheduler,
|
169 |
+
scaler=None,
|
170 |
+
start_iters=None,
|
171 |
+
log_freq=50,
|
172 |
+
cuda_enabled=False,
|
173 |
+
accum_grad_iters=1,
|
174 |
+
):
|
175 |
+
"""
|
176 |
+
An inner training loop compatible with both epoch-based and iter-based training.
|
177 |
+
|
178 |
+
When using epoch-based, training stops after one epoch; when using iter-based,
|
179 |
+
training stops after #iters_per_epoch iterations.
|
180 |
+
"""
|
181 |
+
use_amp = scaler is not None
|
182 |
+
|
183 |
+
if not hasattr(data_loader, "__next__"):
|
184 |
+
# convert to iterator if not already
|
185 |
+
data_loader = iter(data_loader)
|
186 |
+
|
187 |
+
metric_logger = MetricLogger(delimiter=" ")
|
188 |
+
metric_logger.add_meter("lr", SmoothedValue(window_size=1, fmt="{value:.6f}"))
|
189 |
+
metric_logger.add_meter("loss", SmoothedValue(window_size=1, fmt="{value:.4f}"))
|
190 |
+
|
191 |
+
# if iter-based runner, schedule lr based on inner epoch.
|
192 |
+
logging.info(
|
193 |
+
"Start training epoch {}, {} iters per inner epoch.".format(
|
194 |
+
epoch, iters_per_epoch
|
195 |
+
)
|
196 |
+
)
|
197 |
+
header = "Train: data epoch: [{}]".format(epoch)
|
198 |
+
if start_iters is None:
|
199 |
+
# epoch-based runner
|
200 |
+
inner_epoch = epoch
|
201 |
+
else:
|
202 |
+
# In iter-based runner, we schedule the learning rate based on iterations.
|
203 |
+
inner_epoch = start_iters // iters_per_epoch
|
204 |
+
header = header + "; inner epoch [{}]".format(inner_epoch)
|
205 |
+
|
206 |
+
image_list = []
|
207 |
+
caption_list = []
|
208 |
+
for i in metric_logger.log_every(range(iters_per_epoch), log_freq, header):
|
209 |
+
# if using iter-based runner, we stop after iters_per_epoch iterations.
|
210 |
+
if i >= iters_per_epoch:
|
211 |
+
break
|
212 |
+
|
213 |
+
samples = next(data_loader)
|
214 |
+
image_list.append(samples['image_id'])
|
215 |
+
caption_list.append(samples['answer'])
|
216 |
+
|
217 |
+
samples = prepare_sample(samples, cuda_enabled=cuda_enabled)
|
218 |
+
samples.update(
|
219 |
+
{
|
220 |
+
"epoch": inner_epoch,
|
221 |
+
"num_iters_per_epoch": iters_per_epoch,
|
222 |
+
"iters": i,
|
223 |
+
}
|
224 |
+
)
|
225 |
+
|
226 |
+
lr_scheduler.step(cur_epoch=inner_epoch, cur_step=i)
|
227 |
+
|
228 |
+
with torch.cuda.amp.autocast(enabled=use_amp):
|
229 |
+
loss = self.train_step(model=model, samples=samples)
|
230 |
+
|
231 |
+
# after_train_step()
|
232 |
+
if use_amp:
|
233 |
+
scaler.scale(loss).backward()
|
234 |
+
else:
|
235 |
+
loss.backward()
|
236 |
+
|
237 |
+
# update gradients every accum_grad_iters iterations
|
238 |
+
if (i + 1) % accum_grad_iters == 0:
|
239 |
+
if use_amp:
|
240 |
+
scaler.step(optimizer)
|
241 |
+
scaler.update()
|
242 |
+
else:
|
243 |
+
optimizer.step()
|
244 |
+
optimizer.zero_grad()
|
245 |
+
# if self.cfg.wandb_log:
|
246 |
+
if self.cfg.run_cfg.wandb_log:
|
247 |
+
wandb.log({"epoch": inner_epoch, "loss": loss})
|
248 |
+
metric_logger.update(loss=loss.item())
|
249 |
+
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
|
250 |
+
|
251 |
+
# Print the learning rate for attention parameters
|
252 |
+
for param_group in optimizer.param_groups:
|
253 |
+
if "attention" in param_group.get("params", []):
|
254 |
+
print("Attention LR:", param_group["lr"])
|
255 |
+
|
256 |
+
# save random samples' name
|
257 |
+
save_dir = "/home/user/project/Emotion-LLaMA/checkpoints/run_samples"
|
258 |
+
save_to = os.path.join(
|
259 |
+
save_dir,
|
260 |
+
"epoch_{}.txt".format(epoch),
|
261 |
+
)
|
262 |
+
with open(save_to, 'w') as file:
|
263 |
+
for i in range(len(image_list)):
|
264 |
+
name = image_list[i]
|
265 |
+
caption = caption_list[i]
|
266 |
+
file.write(name[0] + " " + caption[0] + '\n')
|
267 |
+
|
268 |
+
# after train_epoch()
|
269 |
+
# gather the stats from all processes
|
270 |
+
metric_logger.synchronize_between_processes()
|
271 |
+
logging.info("Averaged stats: " + str(metric_logger.global_avg()))
|
272 |
+
return {
|
273 |
+
k: "{:.6f}".format(meter.global_avg)
|
274 |
+
for k, meter in metric_logger.meters.items()
|
275 |
+
}
|
276 |
+
|
277 |
+
@staticmethod
|
278 |
+
def save_result(result, result_dir, filename, remove_duplicate=""):
|
279 |
+
import json
|
280 |
+
|
281 |
+
result_file = os.path.join(
|
282 |
+
result_dir, "%s_rank%d.json" % (filename, get_rank())
|
283 |
+
)
|
284 |
+
final_result_file = os.path.join(result_dir, "%s.json" % filename)
|
285 |
+
|
286 |
+
json.dump(result, open(result_file, "w"))
|
287 |
+
|
288 |
+
if is_dist_avail_and_initialized():
|
289 |
+
dist.barrier()
|
290 |
+
|
291 |
+
if is_main_process():
|
292 |
+
logging.warning("rank %d starts merging results." % get_rank())
|
293 |
+
# combine results from all processes
|
294 |
+
result = []
|
295 |
+
|
296 |
+
for rank in range(get_world_size()):
|
297 |
+
result_file = os.path.join(
|
298 |
+
result_dir, "%s_rank%d.json" % (filename, rank)
|
299 |
+
)
|
300 |
+
res = json.load(open(result_file, "r"))
|
301 |
+
result += res
|
302 |
+
|
303 |
+
if remove_duplicate:
|
304 |
+
result_new = []
|
305 |
+
id_list = []
|
306 |
+
for res in result:
|
307 |
+
if res[remove_duplicate] not in id_list:
|
308 |
+
id_list.append(res[remove_duplicate])
|
309 |
+
result_new.append(res)
|
310 |
+
result = result_new
|
311 |
+
|
312 |
+
json.dump(result, open(final_result_file, "w"))
|
313 |
+
print("result file saved to %s" % final_result_file)
|
314 |
+
|
315 |
+
return final_result_file
|
minigpt4/tasks/image_text_pretrain.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
from minigpt4.common.registry import registry
|
9 |
+
from minigpt4.tasks.base_task import BaseTask
|
10 |
+
|
11 |
+
|
12 |
+
@registry.register_task("image_text_pretrain")
|
13 |
+
class ImageTextPretrainTask(BaseTask):
|
14 |
+
def __init__(self):
|
15 |
+
super().__init__()
|
16 |
+
|
17 |
+
def evaluation(self, model, data_loader, cuda_enabled=True):
|
18 |
+
print("-----evaluation----")
|
19 |
+
# pass
|