# Bismillahir Rahmaanir Raheem # Almadadh Ya Gause Radi Allahu Ta'alah Anh - Ameen from joblib import load import gradio as gr # Load the trained model clf = load('iris_decision_tree_model.joblib') # Import iris dataset for target names from sklearn import datasets iris = datasets.load_iris() # Define the prediction function def predict_iris(sepal_length, sepal_width, petal_length, petal_width): prediction = clf.predict([[sepal_length, sepal_width, petal_length, petal_width]]) return iris.target_names[int(prediction[0])] # Create and launch the Gradio interface interface = gr.Interface( fn=predict_iris, inputs=["number", "number", "number", "number"], outputs="text", live=True, title="Iris Flower Model", description="An introductory example of machine learning in Python. An iris flower model trained on the iris flower dataset using the decision tree algorithm. The accuracy of the model is: 97.37%. Input the dimensions of the iris flower's sepal and petal to predict its species." ) interface.launch()