Spaces:
Runtime error
Runtime error
# Bismillahir Rahmaanir Raheem | |
# Almadadh Ya Gause Radi Allahu Ta'alah Anh - Ameen | |
from joblib import load | |
import gradio as gr | |
# Load the trained model | |
clf = load('iris_decision_tree_model.joblib') | |
# Import iris dataset for target names | |
from sklearn import datasets | |
iris = datasets.load_iris() | |
# Define the prediction function | |
def predict_iris(sepal_length, sepal_width, petal_length, petal_width): | |
prediction = clf.predict([[sepal_length, sepal_width, petal_length, petal_width]]) | |
return iris.target_names[int(prediction[0])] | |
# Create and launch the Gradio interface | |
interface = gr.Interface( | |
fn=predict_iris, | |
inputs=["number", "number", "number", "number"], | |
outputs="text", | |
live=True, | |
title="Iris Flower Model", | |
description="An introductory example of machine learning in Python. An iris flower model trained on the iris flower dataset using the decision tree algorithm. The accuracy of the model is: 97.37%. Input the dimensions of the iris flower's sepal and petal to predict its species." | |
) | |
interface.launch() | |