Spaces:
Sleeping
Sleeping
File size: 11,804 Bytes
b2ad712 365d7fc b2ad712 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import gradio as gr
import json
import os
from PIL import Image
from database_operations import Neo4jDatabase
from graph_visualization import visualize_graph
from utils import extract_label_prefix, strip_keys, format_json, validate_json
from models.gemini_image_to_json import fetch_gemini_response
from models.openai_image_to_json import openaiprocess_image_to_json
from any_to_image import pdf_to_images, process_image
# Initialize Neo4j database
db = Neo4jDatabase("bolt://localhost:7687", "neo4j", "password123")
def dump_to_neo4j_with_confirmation(json_content, file_path, history, previous_states):
if not file_path:
return "No image uploaded or invalid file", history, previous_states, None
try:
json_data = json.loads(json_content)
except json.JSONDecodeError:
return "Invalid JSON data. Please check your input.", history, previous_states, None
label_prefix = extract_label_prefix(file_path)
if db.check_existing_graph(label_prefix):
previous_state = db.get_graph_data(label_prefix)
return f"A graph with label prefix '{label_prefix}' already exists in the database. Do you want to overwrite it?", history, previous_states, label_prefix
else:
json_data = strip_keys(json_data)
db.dump_to_neo4j(json_data['nodes'], json_data['edges'], label_prefix)
result = f"Data successfully dumped into the database with label prefix '{label_prefix}'."
new_history = f"{history}\n[NEW ENTRY] {result}" if history else f"[NEW ENTRY] {result}"
previous_states[label_prefix] = []
return result, new_history, previous_states, None
def confirm_overwrite(confirmation, gradio_state, json_content, file_path, history, previous_states):
if confirmation.lower() == 'yes':
try:
label_prefix = extract_label_prefix(file_path)
previous_state = db.get_graph_data(label_prefix)
# print(f'previous_state from the confirm_overwrite function: {previous_state}')
# print(f'label_prefix from the confirm_overwrite function: {label_prefix}')
# print(f'previouse_states from the confirm_overwrite function: {previous_states}')
if label_prefix not in previous_states:
previous_states[label_prefix] = []
previous_states[label_prefix].append(previous_state)
else:
previous_states[label_prefix].append(previous_state)
if len(previous_states[label_prefix]) > 3:
previous_states[label_prefix] = previous_states[label_prefix][-3:]
db.delete_graph(label_prefix)
json_data = json.loads(json_content)
json_data = strip_keys(json_data)
db.dump_to_neo4j(json_data['nodes'], json_data['edges'], label_prefix)
result = f"Data successfully overwritten in the database with label prefix '{label_prefix}'."
new_history = f"{history}\n[OVERWRITE] {result}" if history else f"[OVERWRITE] {result}"
return result, new_history, previous_states, ""
except json.JSONDecodeError:
return "Invalid JSON data. Please check your input.", history, previous_states, ""
else:
return "Operation cancelled. The existing graph was not overwritten.", history, previous_states, ""
def revert_last_action(history, previous_states):
if not history:
return "No actions to revert.", history, previous_states
last_action = history.split('\n')[-1]
label_prefix = last_action.split("'")[1]
if label_prefix in previous_states and previous_states[label_prefix]:
db.delete_graph(label_prefix)
db.dump_to_neo4j(previous_states[label_prefix][-1]['nodes'], previous_states[label_prefix][-1]['edges'], label_prefix)
new_history = history + f"\n[REVERT] Reverted overwrite of graph with label prefix '{label_prefix}'"
previous_states[label_prefix].pop()
return f"Reverted last action: {last_action}", new_history, previous_states
elif label_prefix in previous_states and not previous_states[label_prefix]:
db.delete_graph(label_prefix)
new_history = history + f"\n[REVERT] Deleted newly added graph with label prefix '{label_prefix}'"
del previous_states[label_prefix]
return f"Reverted last action: {last_action}", new_history, previous_states
else:
return "Unable to revert the last action.", history, previous_states
def update_graph_from_edited_json(json_content, physics_enabled):
try:
json_data = json.loads(json_content)
json_data = strip_keys(json_data)
validate_json(json_data)
return visualize_graph(json_data, physics_enabled), ""
except json.JSONDecodeError as e:
return None, f"Invalid JSON format: {str(e)}"
except ValueError as e:
return None, f"Invalid graph structure: {str(e)}"
except Exception as e:
return None, f"An unexpected error occurred: {str(e)}"
def fetch_kg(image_file_path, model_choice_state):
if image_file_path:
mind_map_image = Image.open(image_file_path)
if model_choice_state == 'Gemini':
print(f'model choice is gemini')
kg_json_text = fetch_gemini_response(mind_map_image)
elif model_choice_state == 'OpenAI':
print(f'model choice is openai')
kg_json_text = openaiprocess_image_to_json(mind_map_image)
json_data = json.loads(kg_json_text)
return format_json(json_data), ""
return "", "No image uploaded or invalid file"
def input_file_handler(file_path):
if file_path:
image_path, error = process_image(file_path)
return image_path, error
return "", "No image uploaded or invalid file"
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Image to Knowledge Graph Transformation")
with gr.Row():
file_input = gr.File(label="Upload File", file_count="single",
type="filepath",
file_types=[".pdf", ".png", ".jpeg", ".jpg", ".heic"])
image_file = gr.Image(label="Input Image", type="filepath", visible=False)
json_editor = gr.Textbox(label="Edit JSON", lines=15, placeholder="JSON data will appear here after image upload")
with gr.Row():
with gr.Column():
with gr.Row():
CCW_rotate_button = gr.Button('Rotate Image Counter-Clockwise')
CW_rotate_button = gr.Button('Rotate Image Clockwise')
with gr.Column():
model_call = gr.Button('Transform Image into KG representation', scale=2)
with gr.Row():
physics_button = gr.Checkbox(value=True, label="Enable Graph Physics")
model_choice = gr.Radio(label="Select Model", choices=["OpenAI", "Gemini"], value="Gemini", interactive=True)
graph_output = gr.HTML(label="Graph Output")
error_output = gr.Textbox(label="Error Messages", interactive=False)
update_button = gr.Button("Update Graph")
dump_button = gr.Button("Dump to Neo4j")
revert_button = gr.Button("Revert Last Action")
history_block = gr.Textbox(label="History", placeholder="Graphs pushed to the Database", interactive=False, lines=5, max_lines=50)
history_state = gr.State("")
previous_states = gr.State({})
confirmation_output = gr.Textbox(label="Confirmation Message", visible=False, interactive=False)
confirmation_input = gr.Textbox(label="Type 'yes' to confirm overwrite", visible=False, interactive=True)
confirm_button = gr.Button("Confirm Overwrite", visible=False)
# Added 2 examples for this deployment only
examples_list = ["image_examples/image1.png", "image_examples/image2.png"]
example_component = gr.Examples(examples_list, input=file_input)
file_input.upload(
fn=input_file_handler,
inputs=[file_input],
outputs=[image_file, error_output]
).then(
lambda image_file: (
gr.Image(value=image_file, visible=True),
gr.File(visible=False)
),
inputs=[image_file],
outputs=[image_file, file_input]
)
image_file.clear(
lambda file_input, image_file: (
gr.File(visible=True),
gr.Image(visible=False)
),
inputs=[file_input, image_file],
outputs=[file_input, image_file]
)
def rotate_image_to_left(image_path):
if image_path:
image = Image.open(image_path)
image = image.rotate(-90, expand=True)
image.save(image_path)
return image_path
CW_rotate_button.click(
fn=rotate_image_to_left,
inputs=[image_file],
outputs=[image_file]
)
def rotate_image_to_right(image_path):
if image_path:
image = Image.open(image_path)
image = image.rotate(90, expand=True)
image.save(image_path)
return image_path
CCW_rotate_button.click(
fn=rotate_image_to_right,
inputs=[image_file],
outputs=[image_file]
)
dump_button.click(
dump_to_neo4j_with_confirmation,
inputs=[json_editor, image_file, history_state, previous_states],
outputs=[confirmation_output, history_state, previous_states, gr.State()]
).then(
lambda message, history, previous_states, label_prefix: (
gr.Textbox(value=message, visible=True),
gr.Textbox(visible=True),
gr.Button(visible=True),
history,
previous_states,
label_prefix
),
inputs=[confirmation_output, history_state, previous_states, gr.State()],
outputs=[confirmation_output, confirmation_input, confirm_button, history_state, previous_states, gr.State()]
).then(
lambda history: history,
inputs=[history_state],
outputs=[history_block]
)
gr.on(
triggers=[confirm_button.click, confirmation_input.submit],
fn=confirm_overwrite,
inputs=[confirmation_input, gr.State(), json_editor, image_file, history_state, previous_states],
outputs=[confirmation_output, history_state, previous_states, confirmation_input]
).then(
lambda confirmation_output, confirmation_input: (
gr.Textbox(value=confirmation_output, visible=True),
gr.Textbox(value='', visible=False),
gr.Button(visible=False)
),
inputs=[confirmation_output, confirmation_input],
outputs=[confirmation_output, confirmation_input, confirm_button]
).then(
lambda history: history,
inputs=[history_state],
outputs=[history_block]
)
revert_button.click(
revert_last_action,
inputs=[history_state, previous_states],
outputs=[confirmation_output, history_state, previous_states]
).then(
lambda confirmation_output: gr.Textbox(value=confirmation_output, visible=True),
inputs=[confirmation_output],
outputs=[confirmation_output]
).then(
lambda history: history,
inputs=[history_state],
outputs=[history_block]
)
update_button.click(
update_graph_from_edited_json,
inputs=[json_editor, physics_button],
outputs=[graph_output, error_output]
)
physics_button.change(
update_graph_from_edited_json,
inputs=[json_editor, physics_button],
outputs=[graph_output, error_output]
)
model_call.click(
fn=fetch_kg,
inputs=[image_file, model_choice],
outputs=[json_editor, error_output]
)
if __name__ == "__main__":
demo.launch() |