import streamlit as st from transformers import T5Tokenizer, AutoModelForSeq2SeqLM # Load the Hugging Face model with SentencePiece tokenizer @st.cache_resource def load_model(): tokenizer = T5Tokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws") model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws") return tokenizer, model # Load the model and tokenizer tokenizer, model = load_model() # Streamlit app interface st.title("Paraphrasing Tool - AI to Human") st.write("Paste your AI-generated text below, and the tool will humanize it:") # Input text box input_text = st.text_area("Enter text here (no word limit):") if st.button("Paraphrase"): if input_text.strip(): with st.spinner("Paraphrasing... Please wait."): try: # Prepare input for the model inputs = tokenizer.encode("paraphrase: " + input_text, return_tensors="pt") # Generate paraphrased output outputs = model.generate( inputs, num_beams=5, temperature=0.7, early_stopping=True ) paraphrased_text = tokenizer.decode(outputs[0], skip_special_tokens=True) st.success("Here is the paraphrased text:") st.write(paraphrased_text) except Exception as e: st.error(f"An error occurred: {e}") else: st.error("Please enter some text to paraphrase.")