# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math import warnings from functools import partial from typing import Tuple, Type import torch import torch.nn.functional as F from torch import nn, Tensor from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis from sam2.modeling.sam2_utils import MLP from sam2.utils.misc import get_sdpa_settings warnings.simplefilter(action="ignore", category=FutureWarning) OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = get_sdpa_settings() class TwoWayTransformer(nn.Module): def __init__( self, depth: int, embedding_dim: int, num_heads: int, mlp_dim: int, activation: Type[nn.Module] = nn.ReLU, attention_downsample_rate: int = 2, ) -> None: """ A transformer decoder that attends to an input image using queries whose positional embedding is supplied. Args: depth (int): number of layers in the transformer embedding_dim (int): the channel dimension for the input embeddings num_heads (int): the number of heads for multihead attention. Must divide embedding_dim mlp_dim (int): the channel dimension internal to the MLP block activation (nn.Module): the activation to use in the MLP block """ super().__init__() self.depth = depth self.embedding_dim = embedding_dim self.num_heads = num_heads self.mlp_dim = mlp_dim self.layers = nn.ModuleList() for i in range(depth): self.layers.append( TwoWayAttentionBlock( embedding_dim=embedding_dim, num_heads=num_heads, mlp_dim=mlp_dim, activation=activation, attention_downsample_rate=attention_downsample_rate, skip_first_layer_pe=(i == 0), ) ) self.final_attn_token_to_image = Attention( embedding_dim, num_heads, downsample_rate=attention_downsample_rate ) self.norm_final_attn = nn.LayerNorm(embedding_dim) def forward( self, image_embedding: Tensor, image_pe: Tensor, point_embedding: Tensor, ) -> Tuple[Tensor, Tensor]: """ Args: image_embedding (torch.Tensor): image to attend to. Should be shape B x embedding_dim x h x w for any h and w. image_pe (torch.Tensor): the positional encoding to add to the image. Must have the same shape as image_embedding. point_embedding (torch.Tensor): the embedding to add to the query points. Must have shape B x N_points x embedding_dim for any N_points. Returns: torch.Tensor: the processed point_embedding torch.Tensor: the processed image_embedding """ # BxCxHxW -> BxHWxC == B x N_image_tokens x C bs, c, h, w = image_embedding.shape image_embedding = image_embedding.flatten(2).permute(0, 2, 1) image_pe = image_pe.flatten(2).permute(0, 2, 1) # Prepare queries queries = point_embedding keys = image_embedding # Apply transformer blocks and final layernorm for layer in self.layers: queries, keys = layer( queries=queries, keys=keys, query_pe=point_embedding, key_pe=image_pe, ) # Apply the final attention layer from the points to the image q = queries + point_embedding k = keys + image_pe attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) queries = queries + attn_out queries = self.norm_final_attn(queries) return queries, keys class TwoWayAttentionBlock(nn.Module): def __init__( self, embedding_dim: int, num_heads: int, mlp_dim: int = 2048, activation: Type[nn.Module] = nn.ReLU, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False, ) -> None: """ A transformer block with four layers: (1) self-attention of sparse inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp block on sparse inputs, and (4) cross attention of dense inputs to sparse inputs. Arguments: embedding_dim (int): the channel dimension of the embeddings num_heads (int): the number of heads in the attention layers mlp_dim (int): the hidden dimension of the mlp block activation (nn.Module): the activation of the mlp block skip_first_layer_pe (bool): skip the PE on the first layer """ super().__init__() self.self_attn = Attention(embedding_dim, num_heads) self.norm1 = nn.LayerNorm(embedding_dim) self.cross_attn_token_to_image = Attention( embedding_dim, num_heads, downsample_rate=attention_downsample_rate ) self.norm2 = nn.LayerNorm(embedding_dim) self.mlp = MLP( embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation ) self.norm3 = nn.LayerNorm(embedding_dim) self.norm4 = nn.LayerNorm(embedding_dim) self.cross_attn_image_to_token = Attention( embedding_dim, num_heads, downsample_rate=attention_downsample_rate ) self.skip_first_layer_pe = skip_first_layer_pe def forward( self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor ) -> Tuple[Tensor, Tensor]: # Self attention block if self.skip_first_layer_pe: queries = self.self_attn(q=queries, k=queries, v=queries) else: q = queries + query_pe attn_out = self.self_attn(q=q, k=q, v=queries) queries = queries + attn_out queries = self.norm1(queries) # Cross attention block, tokens attending to image embedding q = queries + query_pe k = keys + key_pe attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) queries = queries + attn_out queries = self.norm2(queries) # MLP block mlp_out = self.mlp(queries) queries = queries + mlp_out queries = self.norm3(queries) # Cross attention block, image embedding attending to tokens q = queries + query_pe k = keys + key_pe attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) keys = keys + attn_out keys = self.norm4(keys) return queries, keys class Attention(nn.Module): """ An attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and values. """ def __init__( self, embedding_dim: int, num_heads: int, downsample_rate: int = 1, dropout: float = 0.0, kv_in_dim: int = None, ) -> None: super().__init__() self.embedding_dim = embedding_dim self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim self.internal_dim = embedding_dim // downsample_rate self.num_heads = num_heads assert ( self.internal_dim % num_heads == 0 ), "num_heads must divide embedding_dim." self.q_proj = nn.Linear(embedding_dim, self.internal_dim) self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim) self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim) self.out_proj = nn.Linear(self.internal_dim, embedding_dim) self.dropout_p = dropout def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: b, n, c = x.shape x = x.reshape(b, n, num_heads, c // num_heads) return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head def _recombine_heads(self, x: Tensor) -> Tensor: b, n_heads, n_tokens, c_per_head = x.shape x = x.transpose(1, 2) return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: # Input projections q = self.q_proj(q) k = self.k_proj(k) v = self.v_proj(v) # Separate into heads q = self._separate_heads(q, self.num_heads) k = self._separate_heads(k, self.num_heads) v = self._separate_heads(v, self.num_heads) dropout_p = self.dropout_p if self.training else 0.0 # Attention # with torch.backends.cuda.sdp_kernel( # enable_flash=USE_FLASH_ATTN, # # if Flash attention kernel is off, then math kernel needs to be enabled # enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON, # enable_mem_efficient=OLD_GPU, # ): # out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) out = self._recombine_heads(out) out = self.out_proj(out) return out class RoPEAttention(Attention): """Attention with rotary position encoding.""" def __init__( self, *args, rope_theta=10000.0, # whether to repeat q rope to match k length # this is needed for cross-attention to memories rope_k_repeat=False, feat_sizes=(32, 32), # [w, h] for stride 16 feats at 512 resolution **kwargs, ): super().__init__(*args, **kwargs) self.compute_cis = partial( compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta ) freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1]) self.freqs_cis = freqs_cis self.rope_k_repeat = rope_k_repeat def forward( self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0 ) -> Tensor: # Input projections q = self.q_proj(q) k = self.k_proj(k) v = self.v_proj(v) # Separate into heads q = self._separate_heads(q, self.num_heads) k = self._separate_heads(k, self.num_heads) v = self._separate_heads(v, self.num_heads) # Apply rotary position encoding w = h = math.sqrt(q.shape[-2]) self.freqs_cis = self.freqs_cis.to(q.device) if self.freqs_cis.shape[0] != q.shape[-2]: self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device) if q.shape[-2] != k.shape[-2]: assert self.rope_k_repeat num_k_rope = k.size(-2) - num_k_exclude_rope q, k[:, :, :num_k_rope] = apply_rotary_enc( q, k[:, :, :num_k_rope], freqs_cis=self.freqs_cis, repeat_freqs_k=self.rope_k_repeat, ) dropout_p = self.dropout_p if self.training else 0.0 # Attention # with torch.backends.cuda.sdp_kernel( # enable_flash=USE_FLASH_ATTN, # # if Flash attention kernel is off, then math kernel needs to be enabled # enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON, # enable_mem_efficient=OLD_GPU, # ): # out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) out = self._recombine_heads(out) out = self.out_proj(out) return out