_
File size: 11,979 Bytes
da3eeba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import math
import warnings
from functools import partial
from typing import Tuple, Type

import torch
import torch.nn.functional as F
from torch import nn, Tensor

from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis

from sam2.modeling.sam2_utils import MLP
from sam2.utils.misc import get_sdpa_settings

warnings.simplefilter(action="ignore", category=FutureWarning)
OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = get_sdpa_settings()


class TwoWayTransformer(nn.Module):
    def __init__(

        self,

        depth: int,

        embedding_dim: int,

        num_heads: int,

        mlp_dim: int,

        activation: Type[nn.Module] = nn.ReLU,

        attention_downsample_rate: int = 2,

    ) -> None:
        """

        A transformer decoder that attends to an input image using

        queries whose positional embedding is supplied.



        Args:

          depth (int): number of layers in the transformer

          embedding_dim (int): the channel dimension for the input embeddings

          num_heads (int): the number of heads for multihead attention. Must

            divide embedding_dim

          mlp_dim (int): the channel dimension internal to the MLP block

          activation (nn.Module): the activation to use in the MLP block

        """
        super().__init__()
        self.depth = depth
        self.embedding_dim = embedding_dim
        self.num_heads = num_heads
        self.mlp_dim = mlp_dim
        self.layers = nn.ModuleList()

        for i in range(depth):
            self.layers.append(
                TwoWayAttentionBlock(
                    embedding_dim=embedding_dim,
                    num_heads=num_heads,
                    mlp_dim=mlp_dim,
                    activation=activation,
                    attention_downsample_rate=attention_downsample_rate,
                    skip_first_layer_pe=(i == 0),
                )
            )

        self.final_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )
        self.norm_final_attn = nn.LayerNorm(embedding_dim)

    def forward(

        self,

        image_embedding: Tensor,

        image_pe: Tensor,

        point_embedding: Tensor,

    ) -> Tuple[Tensor, Tensor]:
        """

        Args:

          image_embedding (torch.Tensor): image to attend to. Should be shape

            B x embedding_dim x h x w for any h and w.

          image_pe (torch.Tensor): the positional encoding to add to the image. Must

            have the same shape as image_embedding.

          point_embedding (torch.Tensor): the embedding to add to the query points.

            Must have shape B x N_points x embedding_dim for any N_points.



        Returns:

          torch.Tensor: the processed point_embedding

          torch.Tensor: the processed image_embedding

        """
        # BxCxHxW -> BxHWxC == B x N_image_tokens x C
        bs, c, h, w = image_embedding.shape
        image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
        image_pe = image_pe.flatten(2).permute(0, 2, 1)

        # Prepare queries
        queries = point_embedding
        keys = image_embedding

        # Apply transformer blocks and final layernorm
        for layer in self.layers:
            queries, keys = layer(
                queries=queries,
                keys=keys,
                query_pe=point_embedding,
                key_pe=image_pe,
            )

        # Apply the final attention layer from the points to the image
        q = queries + point_embedding
        k = keys + image_pe
        attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
        queries = queries + attn_out
        queries = self.norm_final_attn(queries)

        return queries, keys


class TwoWayAttentionBlock(nn.Module):
    def __init__(

        self,

        embedding_dim: int,

        num_heads: int,

        mlp_dim: int = 2048,

        activation: Type[nn.Module] = nn.ReLU,

        attention_downsample_rate: int = 2,

        skip_first_layer_pe: bool = False,

    ) -> None:
        """

        A transformer block with four layers: (1) self-attention of sparse

        inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp

        block on sparse inputs, and (4) cross attention of dense inputs to sparse

        inputs.



        Arguments:

          embedding_dim (int): the channel dimension of the embeddings

          num_heads (int): the number of heads in the attention layers

          mlp_dim (int): the hidden dimension of the mlp block

          activation (nn.Module): the activation of the mlp block

          skip_first_layer_pe (bool): skip the PE on the first layer

        """
        super().__init__()
        self.self_attn = Attention(embedding_dim, num_heads)
        self.norm1 = nn.LayerNorm(embedding_dim)

        self.cross_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )
        self.norm2 = nn.LayerNorm(embedding_dim)

        self.mlp = MLP(
            embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation
        )
        self.norm3 = nn.LayerNorm(embedding_dim)

        self.norm4 = nn.LayerNorm(embedding_dim)
        self.cross_attn_image_to_token = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )

        self.skip_first_layer_pe = skip_first_layer_pe

    def forward(

        self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor

    ) -> Tuple[Tensor, Tensor]:
        # Self attention block
        if self.skip_first_layer_pe:
            queries = self.self_attn(q=queries, k=queries, v=queries)
        else:
            q = queries + query_pe
            attn_out = self.self_attn(q=q, k=q, v=queries)
            queries = queries + attn_out
        queries = self.norm1(queries)

        # Cross attention block, tokens attending to image embedding
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
        queries = queries + attn_out
        queries = self.norm2(queries)

        # MLP block
        mlp_out = self.mlp(queries)
        queries = queries + mlp_out
        queries = self.norm3(queries)

        # Cross attention block, image embedding attending to tokens
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
        keys = keys + attn_out
        keys = self.norm4(keys)

        return queries, keys


class Attention(nn.Module):
    """

    An attention layer that allows for downscaling the size of the embedding

    after projection to queries, keys, and values.

    """

    def __init__(

        self,

        embedding_dim: int,

        num_heads: int,

        downsample_rate: int = 1,

        dropout: float = 0.0,

        kv_in_dim: int = None,

    ) -> None:
        super().__init__()
        self.embedding_dim = embedding_dim
        self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
        self.internal_dim = embedding_dim // downsample_rate
        self.num_heads = num_heads
        assert (
            self.internal_dim % num_heads == 0
        ), "num_heads must divide embedding_dim."

        self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
        self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
        self.out_proj = nn.Linear(self.internal_dim, embedding_dim)

        self.dropout_p = dropout

    def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
        b, n, c = x.shape
        x = x.reshape(b, n, num_heads, c // num_heads)
        return x.transpose(1, 2)  # B x N_heads x N_tokens x C_per_head

    def _recombine_heads(self, x: Tensor) -> Tensor:
        b, n_heads, n_tokens, c_per_head = x.shape
        x = x.transpose(1, 2)
        return x.reshape(b, n_tokens, n_heads * c_per_head)  # B x N_tokens x C

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
        # Input projections
        q = self.q_proj(q)
        k = self.k_proj(k)
        v = self.v_proj(v)

        # Separate into heads
        q = self._separate_heads(q, self.num_heads)
        k = self._separate_heads(k, self.num_heads)
        v = self._separate_heads(v, self.num_heads)

        dropout_p = self.dropout_p if self.training else 0.0
        # Attention
        # with torch.backends.cuda.sdp_kernel(
        #     enable_flash=USE_FLASH_ATTN,
        #     # if Flash attention kernel is off, then math kernel needs to be enabled
        #     enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON,
        #     enable_mem_efficient=OLD_GPU,
        # ):
        #     out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
        out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)

        out = self._recombine_heads(out)
        out = self.out_proj(out)

        return out


class RoPEAttention(Attention):
    """Attention with rotary position encoding."""

    def __init__(

        self,

        *args,

        rope_theta=10000.0,

        # whether to repeat q rope to match k length

        # this is needed for cross-attention to memories

        rope_k_repeat=False,

        feat_sizes=(32, 32),  # [w, h] for stride 16 feats at 512 resolution

        **kwargs,

    ):
        super().__init__(*args, **kwargs)

        self.compute_cis = partial(
            compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta
        )
        freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1])
        self.freqs_cis = freqs_cis
        self.rope_k_repeat = rope_k_repeat

    def forward(

        self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0

    ) -> Tensor:
        # Input projections
        q = self.q_proj(q)
        k = self.k_proj(k)
        v = self.v_proj(v)

        # Separate into heads
        q = self._separate_heads(q, self.num_heads)
        k = self._separate_heads(k, self.num_heads)
        v = self._separate_heads(v, self.num_heads)

        # Apply rotary position encoding
        w = h = math.sqrt(q.shape[-2])
        self.freqs_cis = self.freqs_cis.to(q.device)
        if self.freqs_cis.shape[0] != q.shape[-2]:
            self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device)
        if q.shape[-2] != k.shape[-2]:
            assert self.rope_k_repeat

        num_k_rope = k.size(-2) - num_k_exclude_rope
        q, k[:, :, :num_k_rope] = apply_rotary_enc(
            q,
            k[:, :, :num_k_rope],
            freqs_cis=self.freqs_cis,
            repeat_freqs_k=self.rope_k_repeat,
        )

        dropout_p = self.dropout_p if self.training else 0.0
        # Attention
        # with torch.backends.cuda.sdp_kernel(
        #     enable_flash=USE_FLASH_ATTN,
        #     # if Flash attention kernel is off, then math kernel needs to be enabled
        #     enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON,
        #     enable_mem_efficient=OLD_GPU,
        # ):
        #     out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
        out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)

        out = self._recombine_heads(out)
        out = self.out_proj(out)

        return out