from collections import deque from typing import Dict, List, Optional, Any import re from langchain import LLMChain, OpenAI, PromptTemplate, SerpAPIWrapper from langchain.embeddings import OpenAIEmbeddings from langchain.llms import BaseLLM from langchain.vectorstores.base import VectorStore from pydantic import BaseModel, Field from langchain.chains.base import Chain from langchain.vectorstores import FAISS import faiss from langchain.docstore import InMemoryDocstore from langchain.agents import ZeroShotAgent, Tool, AgentExecutor from swarms.agent.executor import Executor, AgentExecutorWithTranslation class ContextAwareAgent(ZeroShotAgent): def get_full_inputs(self, intermediate_steps, **kwargs: Any) -> Dict[str, Any]: """Create the full inputs for the LLMChain from intermediate steps.""" thoughts = self._construct_scratchpad(intermediate_steps) new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop} full_inputs = {**kwargs, **new_inputs} return full_inputs def _construct_scratchpad(self, intermediate_steps): """Construct the scratchpad that lets the agent continue its thought process.""" thoughts = "" # only modify the following line, [-2: ] for action, observation in intermediate_steps[-2:]: thoughts += action.log thoughts += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}" if "is not a valid tool, try another one" in observation: thoughts += ( "You should select another tool rather than the invalid one.\n" ) return thoughts class TaskCreationChain(LLMChain): """Chain to generates tasks.""" @classmethod def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain: """Get the response parser.""" task_creation_template = ( "You are an task creation AI that uses the result of an execution agent" " to create new tasks with the following objective: {objective}," " The last completed task has the result: {result}." " This result was based on this task description: {task_description}." " These are incomplete tasks: {incomplete_tasks}." " Based on the result, create new tasks to be completed" " by the AI system that do not overlap with incomplete tasks." " For a simple objective, do not generate complex todo lists." " Do not generate repetitive tasks (e.g., tasks that have already been completed)." " If there is not futher task needed to complete the objective, return NO TASK." " Now return the tasks as an array." ) prompt = PromptTemplate( template=task_creation_template, input_variables=[ "result", "task_description", "incomplete_tasks", "objective", ], ) return cls(prompt=prompt, llm=llm, verbose=verbose) class InitialTaskCreationChain(LLMChain): """Chain to generates tasks.""" @classmethod def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain: """Get the response parser.""" task_creation_template = "You are a planner who is an expert at coming up with a todo list for a given objective. For a simple objective, do not generate a complex todo list. Generate the first (only one) task needed to do for this objective: {objective}" prompt = PromptTemplate( template=task_creation_template, input_variables=["objective"], ) return cls(prompt=prompt, llm=llm, verbose=verbose) class TaskPrioritizationChain(LLMChain): """Chain to prioritize tasks.""" @classmethod def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain: """Get the response parser.""" task_prioritization_template = ( "You are an task prioritization AI tasked with cleaning the formatting of and reprioritizing" " the following tasks: {task_names}." " Consider the ultimate objective of your team: {objective}." " Do not make up any tasks, just reorganize the existing tasks." " Do not remove any tasks. Return the result as a numbered list, like:" " #. First task" " #. Second task" " Start the task list with number {next_task_id}. (e.g., 2. ***, 3. ***, etc.)" ) prompt = PromptTemplate( template=task_prioritization_template, input_variables=["task_names", "next_task_id", "objective"], ) return cls(prompt=prompt, llm=llm, verbose=verbose) def get_next_task( task_creation_chain: LLMChain, result: Dict, task_description: str, task_list: List[str], objective: str, ) -> List[Dict]: """Get the next task.""" incomplete_tasks = ", ".join(task_list) response = task_creation_chain.run( result=result, task_description=task_description, incomplete_tasks=incomplete_tasks, objective=objective, ) # change the split method to re matching # new_tasks = response.split('\n') task_pattern = re.compile(r"\d+\. (.+?)\n") new_tasks = task_pattern.findall(response) return [{"task_name": task_name} for task_name in new_tasks if task_name.strip()] def prioritize_tasks( task_prioritization_chain: LLMChain, this_task_id: int, task_list: List[Dict], objective: str, ) -> List[Dict]: """Prioritize tasks.""" task_names = [t["task_name"] for t in task_list] next_task_id = int(this_task_id) + 1 response = task_prioritization_chain.run( task_names=task_names, next_task_id=next_task_id, objective=objective ) new_tasks = response.split("\n") prioritized_task_list = [] for task_string in new_tasks: if not task_string.strip(): continue task_parts = task_string.strip().split(".", 1) if len(task_parts) == 2: task_id = task_parts[0].strip() task_name = task_parts[1].strip() prioritized_task_list.append({"task_id": task_id, "task_name": task_name}) return prioritized_task_list def _get_top_tasks(vectorstore, query: str, k: int) -> List[str]: """Get the top k tasks based on the query.""" results = vectorstore.similarity_search_with_score(query, k=k) if not results: return [] sorted_results, _ = zip(*sorted(results, key=lambda x: x[1], reverse=True)) return [str(item.metadata["task"]) for item in sorted_results] def execute_task( vectorstore, execution_chain: LLMChain, objective: str, task: str, k: int = 5 ) -> str: """Execute a task.""" context = _get_top_tasks(vectorstore, query=objective, k=k) return execution_chain.run(objective=objective, context=context, task=task) class BabyAGI(Chain, BaseModel): """Controller model for the BabyAGI agent.""" task_list: deque = Field(default_factory=deque) task_creation_chain: TaskCreationChain = Field(...) task_prioritization_chain: TaskPrioritizationChain = Field(...) initial_task_creation_chain: InitialTaskCreationChain = Field(...) execution_chain: AgentExecutor = Field(...) task_id_counter: int = Field(1) vectorstore: VectorStore = Field(init=False) max_iterations: Optional[int] = None class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True def add_task(self, task: Dict): self.task_list.append(task) def print_task_list(self): print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m") for t in self.task_list: print(str(t["task_id"]) + ": " + t["task_name"]) def print_next_task(self, task: Dict): print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m") print(str(task["task_id"]) + ": " + task["task_name"]) def print_task_result(self, result: str): print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m") print(result) @property def input_keys(self) -> List[str]: return ["objective"] @property def output_keys(self) -> List[str]: return [] def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Run the agent.""" # not an elegant implementation, but it works for the first task objective = inputs["objective"] first_task = inputs.get( "first_task", self.initial_task_creation_chain.run(objective=objective) ) # self.task_creation_chain.llm(initial_task_prompt)) self.add_task({"task_id": 1, "task_name": first_task}) num_iters = 0 while True: if self.task_list: self.print_task_list() # Step 1: Pull the first task task = self.task_list.popleft() self.print_next_task(task) # Step 2: Execute the task result = execute_task( self.vectorstore, self.execution_chain, objective, task["task_name"] ) this_task_id = int(task["task_id"]) self.print_task_result(result) # Step 3: Store the result in Pinecone result_id = f"result_{task['task_id']}" self.vectorstore.add_texts( texts=[result], metadatas=[{"task": task["task_name"]}], ids=[result_id], ) # Step 4: Create new tasks and reprioritize task list new_tasks = get_next_task( self.task_creation_chain, result, task["task_name"], [t["task_name"] for t in self.task_list], objective, ) for new_task in new_tasks: self.task_id_counter += 1 new_task.update({"task_id": self.task_id_counter}) self.add_task(new_task) if len(self.task_list) == 0: print( "\033[91m\033[1m" + "\n*****NO TASK, ABORTING*****\n" + "\033[0m\033[0m" ) break self.task_list = deque( prioritize_tasks( self.task_prioritization_chain, this_task_id, list(self.task_list), objective, ) ) num_iters += 1 if self.max_iterations is not None and num_iters == self.max_iterations: print( "\033[91m\033[1m" + "\n*****TASK ENDING*****\n" + "\033[0m\033[0m" ) break return {} @classmethod def from_llm( cls, llm: BaseLLM, prompt=None, verbose: bool = False, tools=None, stream_output=None, **kwargs, ) -> "BabyAGI": embeddings_model = OpenAIEmbeddings() embedding_size = 1536 index = faiss.IndexFlatL2(embedding_size) vectorstore = FAISS( embeddings_model.embed_query, index, InMemoryDocstore({}), {} ) task_creation_chain = TaskCreationChain.from_llm(llm, verbose=verbose) initial_task_creation_chain = InitialTaskCreationChain.from_llm( llm, verbose=verbose ) task_prioritization_chain = TaskPrioritizationChain.from_llm( llm, verbose=verbose ) llm_chain = LLMChain(llm=llm, prompt=prompt) tool_names = [tool.name for tool in tools] agent = ContextAwareAgent(llm_chain=llm_chain, allowed_tools=tool_names) if stream_output: agent_executor = Executor.from_agent_and_tools( agent=agent, tools=tools, verbose=True ) else: agent_executor = AgentExecutorWithTranslation.from_agent_and_tools( agent=agent, tools=tools, verbose=True ) return cls( task_creation_chain=task_creation_chain, task_prioritization_chain=task_prioritization_chain, initial_task_creation_chain=initial_task_creation_chain, execution_chain=agent_executor, vectorstore=vectorstore, **kwargs, ) if __name__ == "__main__": todo_prompt = PromptTemplate.from_template( "You are a planner who is an expert at coming up with a todo list for a given objective. For a simple objective, do not generate a complex todo list. Come up with a todo list for this objective: {objective}" ) todo_chain = LLMChain(llm=OpenAI(temperature=0), prompt=todo_prompt) search = SerpAPIWrapper() tools = [ Tool( name="Search", func=search.run, description="useful for when you need to answer questions about current events", ), Tool( name="TODO", func=todo_chain.run, description="useful for when you need to come up with todo lists. Input: an objective to create a todo list for. Output: a todo list for that objective. Please be very clear what the objective is!", ), ] prefix = """You are an AI who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.""" suffix = """Question: {task} {agent_scratchpad}""" prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=["objective", "task", "context", "agent_scratchpad"], ) OBJECTIVE = "Write a weather report for SF today" llm = OpenAI(temperature=0) # Logging of LLMChains verbose = False # If None, will keep on going forever max_iterations: Optional[int] = 10 baby_agi = BabyAGI.from_llm(llm=llm, verbose=verbose, max_iterations=max_iterations) baby_agi({"objective": OBJECTIVE})