Spaces:
Runtime error
Runtime error
File size: 7,009 Bytes
9667e74 938daee 9667e74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# Copyright (c) Facebook, Inc. and its affiliates.
import os
import os.path as osp
import sys
import numpy as np
import cv2
import math
import torch
import torchvision.transforms as transforms
# from PIL import Image
# Code from https://github.com/Daniil-Osokin/lightweight-human-pose-estimation.pytorch/blob/master/demo.py
# 2D body pose estimator
sys.path.append('lite_openpose')
from pose2d_models.with_mobilenet import PoseEstimationWithMobileNet
from modules.load_state import load_state
from modules.pose import Pose, track_poses
from modules.keypoints import extract_keypoints, group_keypoints
def normalize(img, img_mean, img_scale):
img = np.array(img, dtype=np.float32)
img = (img - img_mean) * img_scale
return img
def pad_width(img, stride, pad_value, min_dims):
h, w, _ = img.shape
h = min(min_dims[0], h)
min_dims[0] = math.ceil(min_dims[0] / float(stride)) * stride
min_dims[1] = max(min_dims[1], w)
min_dims[1] = math.ceil(min_dims[1] / float(stride)) * stride
pad = []
pad.append(int(math.floor((min_dims[0] - h) / 2.0)))
pad.append(int(math.floor((min_dims[1] - w) / 2.0)))
pad.append(int(min_dims[0] - h - pad[0]))
pad.append(int(min_dims[1] - w - pad[1]))
padded_img = cv2.copyMakeBorder(img, pad[0], pad[2], pad[1], pad[3],
cv2.BORDER_CONSTANT, value=pad_value)
return padded_img, pad
class BodyPoseEstimator(object):
"""
Hand Detector for third-view input.
It combines a body pose estimator (https://github.com/jhugestar/lightweight-human-pose-estimation.pytorch.git)
"""
def __init__(self, device='cpu'):
# print("Loading Body Pose Estimator")
self.device=device
self.__load_body_estimator()
def __load_body_estimator(self):
net = PoseEstimationWithMobileNet()
pose2d_checkpoint = "lite_openpose/checkpoint_iter_370000.pth"
checkpoint = torch.load(pose2d_checkpoint, map_location='cpu')
load_state(net, checkpoint)
net = net.eval()
net = net.to(self.device)
self.model = net
#Code from https://github.com/Daniil-Osokin/lightweight-human-pose-estimation.pytorch/demo.py
def __infer_fast(self, img, input_height_size, stride, upsample_ratio,
cpu=False, pad_value=(0, 0, 0), img_mean=(128, 128, 128), img_scale=1/256):
height, width, _ = img.shape
scale = input_height_size / height
scaled_img = cv2.resize(img, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
scaled_img = normalize(scaled_img, img_mean, img_scale)
min_dims = [input_height_size, max(scaled_img.shape[1], input_height_size)]
padded_img, pad = pad_width(scaled_img, stride, pad_value, min_dims)
tensor_img = torch.from_numpy(padded_img).permute(2, 0, 1).unsqueeze(0).float()
if not cpu:
tensor_img = tensor_img.to(self.device)
with torch.no_grad():
stages_output = self.model(tensor_img)
stage2_heatmaps = stages_output[-2]
heatmaps = np.transpose(stage2_heatmaps.squeeze().cpu().data.numpy(), (1, 2, 0))
heatmaps = cv2.resize(heatmaps, (0, 0), fx=upsample_ratio, fy=upsample_ratio, interpolation=cv2.INTER_CUBIC)
stage2_pafs = stages_output[-1]
pafs = np.transpose(stage2_pafs.squeeze().cpu().data.numpy(), (1, 2, 0))
pafs = cv2.resize(pafs, (0, 0), fx=upsample_ratio, fy=upsample_ratio, interpolation=cv2.INTER_CUBIC)
return heatmaps, pafs, scale, pad
def detect_body_pose(self, img):
"""
Output:
current_bbox: BBOX_XYWH
"""
stride = 8
upsample_ratio = 4
orig_img = img.copy()
# forward
heatmaps, pafs, scale, pad = self.__infer_fast(img,
input_height_size=256, stride=stride, upsample_ratio=upsample_ratio)
total_keypoints_num = 0
all_keypoints_by_type = []
num_keypoints = Pose.num_kpts
for kpt_idx in range(num_keypoints): # 19th for bg
total_keypoints_num += extract_keypoints(heatmaps[:, :, kpt_idx], all_keypoints_by_type, total_keypoints_num)
pose_entries, all_keypoints = group_keypoints(all_keypoints_by_type, pafs, demo=True)
for kpt_id in range(all_keypoints.shape[0]):
all_keypoints[kpt_id, 0] = (all_keypoints[kpt_id, 0] * stride / upsample_ratio - pad[1]) / scale
all_keypoints[kpt_id, 1] = (all_keypoints[kpt_id, 1] * stride / upsample_ratio - pad[0]) / scale
'''
# print(len(pose_entries))
if len(pose_entries)>1:
pose_entries = pose_entries[:1]
print("We only support one person currently")
# assert len(pose_entries) == 1, "We only support one person currently"
'''
current_poses, current_bbox = list(), list()
for n in range(len(pose_entries)):
if len(pose_entries[n]) == 0:
continue
pose_keypoints = np.ones((num_keypoints, 2), dtype=np.int32) * -1
for kpt_id in range(num_keypoints):
if pose_entries[n][kpt_id] != -1.0: # keypoint was found
pose_keypoints[kpt_id, 0] = int(all_keypoints[int(pose_entries[n][kpt_id]), 0])
pose_keypoints[kpt_id, 1] = int(all_keypoints[int(pose_entries[n][kpt_id]), 1])
pose = Pose(pose_keypoints, pose_entries[n][18])
current_poses.append(pose.keypoints)
current_bbox.append(np.array(pose.bbox))
# enlarge the bbox
for i, bbox in enumerate(current_bbox):
x, y, w, h = bbox
margin = 0.2
x_margin = int(w * margin)
y_margin = int(h * margin)
x0 = max(x-x_margin, 0)
y0 = max(y-y_margin, 0)
x1 = min(x+w+x_margin, orig_img.shape[1])
y1 = min(y+h+y_margin, orig_img.shape[0])
current_bbox[i] = np.array((x0, y0, x1, y1)).astype(np.int32) # ltrb
# 只拿一个人
body_point_list = []
if len(current_poses) > 0:
for item in current_poses[0]:
if item[0] == item[1] == -1:
body_point_list += [0.0, 0.0, 0.0]
else:
body_point_list += [float(item[0]), float(item[1]), 1.0]
else:
for i in range(18):
body_point_list += [0.0, 0.0, 0.0]
pose_dict = dict()
pose_dict["people"] = []
pose_dict["people"].append({
"person_id": [-1],
"pose_keypoints_2d": body_point_list,
"hand_left_keypoints_2d": [],
"hand_right_keypoints_2d": [],
"face_keypoints_2d": [],
"pose_keypoints_3d": [],
"face_keypoints_3d": [],
"hand_left_keypoints_3d": [],
"hand_right_keypoints_3d": [],
})
return current_poses, current_bbox |