Spaces:
Sleeping
Sleeping
Surya Narayana
commited on
Upload text_to_image.py
Browse files- text_to_image.py +681 -0
text_to_image.py
ADDED
@@ -0,0 +1,681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""text-to-image.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1OcehPd4sJRgAE0kaYV9y8oTf0G0VElbU
|
8 |
+
"""
|
9 |
+
|
10 |
+
# Commented out IPython magic to ensure Python compatibility.
|
11 |
+
# %pip install -q "openvino>=2023.1.0"
|
12 |
+
# %pip install -q --extra-index-url https://download.pytorch.org/whl/cpu "diffusers[torch]>=0.9.0"
|
13 |
+
# %pip install -q "huggingface-hub>=0.9.1"
|
14 |
+
# %pip install -q gradio
|
15 |
+
# %pip install -q transformers
|
16 |
+
# %pip install kaleido cohere openai tiktoken
|
17 |
+
# %pip install typing-extensions==3.10.0.2
|
18 |
+
# %pip install diffusers transformers
|
19 |
+
|
20 |
+
from diffusers import StableDiffusionPipeline
|
21 |
+
import gc
|
22 |
+
|
23 |
+
pipe = StableDiffusionPipeline.from_pretrained("prompthero/openjourney").to("cpu")
|
24 |
+
text_encoder = pipe.text_encoder
|
25 |
+
text_encoder.eval()
|
26 |
+
unet = pipe.unet
|
27 |
+
unet.eval()
|
28 |
+
vae = pipe.vae
|
29 |
+
vae.eval()
|
30 |
+
|
31 |
+
del pipe
|
32 |
+
gc.collect()
|
33 |
+
|
34 |
+
from pathlib import Path
|
35 |
+
import torch
|
36 |
+
import openvino as ov
|
37 |
+
|
38 |
+
TEXT_ENCODER_OV_PATH = Path("text_encoder.xml")
|
39 |
+
|
40 |
+
def cleanup_torchscript_cache():
|
41 |
+
"""
|
42 |
+
Helper for removing cached model representation
|
43 |
+
"""
|
44 |
+
torch._C._jit_clear_class_registry()
|
45 |
+
torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
|
46 |
+
torch.jit._state._clear_class_state()
|
47 |
+
|
48 |
+
def convert_encoder(text_encoder: torch.nn.Module, ir_path:Path):
|
49 |
+
"""
|
50 |
+
Convert Text Encoder mode.
|
51 |
+
Function accepts text encoder model, and prepares example inputs for conversion,
|
52 |
+
Parameters:
|
53 |
+
text_encoder (torch.nn.Module): text_encoder model from Stable Diffusion pipeline
|
54 |
+
ir_path (Path): File for storing model
|
55 |
+
Returns:
|
56 |
+
None
|
57 |
+
"""
|
58 |
+
input_ids = torch.ones((1, 77), dtype=torch.long)
|
59 |
+
# switch model to inference mode
|
60 |
+
text_encoder.eval()
|
61 |
+
|
62 |
+
# disable gradients calculation for reducing memory consumption
|
63 |
+
with torch.no_grad():
|
64 |
+
# Export model to IR format
|
65 |
+
ov_model = ov.convert_model(text_encoder, example_input=input_ids, input=[(1,77),])
|
66 |
+
ov.save_model(ov_model, ir_path)
|
67 |
+
del ov_model
|
68 |
+
cleanup_torchscript_cache()
|
69 |
+
print(f'Text Encoder successfully converted to IR and saved to {ir_path}')
|
70 |
+
|
71 |
+
|
72 |
+
if not TEXT_ENCODER_OV_PATH.exists():
|
73 |
+
convert_encoder(text_encoder, TEXT_ENCODER_OV_PATH)
|
74 |
+
else:
|
75 |
+
print(f"Text encoder will be loaded from {TEXT_ENCODER_OV_PATH}")
|
76 |
+
|
77 |
+
del text_encoder
|
78 |
+
gc.collect()
|
79 |
+
|
80 |
+
import numpy as np
|
81 |
+
|
82 |
+
UNET_OV_PATH = Path('unet.xml')
|
83 |
+
|
84 |
+
dtype_mapping = {
|
85 |
+
torch.float32: ov.Type.f32,
|
86 |
+
torch.float64: ov.Type.f64
|
87 |
+
}
|
88 |
+
|
89 |
+
|
90 |
+
def convert_unet(unet:torch.nn.Module, ir_path:Path):
|
91 |
+
"""
|
92 |
+
Convert U-net model to IR format.
|
93 |
+
Function accepts unet model, prepares example inputs for conversion,
|
94 |
+
Parameters:
|
95 |
+
unet (StableDiffusionPipeline): unet from Stable Diffusion pipeline
|
96 |
+
ir_path (Path): File for storing model
|
97 |
+
Returns:
|
98 |
+
None
|
99 |
+
"""
|
100 |
+
# prepare inputs
|
101 |
+
encoder_hidden_state = torch.ones((2, 77, 768))
|
102 |
+
latents_shape = (2, 4, 512 // 8, 512 // 8)
|
103 |
+
latents = torch.randn(latents_shape)
|
104 |
+
t = torch.from_numpy(np.array(1, dtype=float))
|
105 |
+
dummy_inputs = (latents, t, encoder_hidden_state)
|
106 |
+
input_info = []
|
107 |
+
for input_tensor in dummy_inputs:
|
108 |
+
shape = ov.PartialShape(tuple(input_tensor.shape))
|
109 |
+
element_type = dtype_mapping[input_tensor.dtype]
|
110 |
+
input_info.append((shape, element_type))
|
111 |
+
|
112 |
+
unet.eval()
|
113 |
+
with torch.no_grad():
|
114 |
+
ov_model = ov.convert_model(unet, example_input=dummy_inputs, input=input_info)
|
115 |
+
ov.save_model(ov_model, ir_path)
|
116 |
+
del ov_model
|
117 |
+
cleanup_torchscript_cache()
|
118 |
+
print(f'Unet successfully converted to IR and saved to {ir_path}')
|
119 |
+
|
120 |
+
|
121 |
+
if not UNET_OV_PATH.exists():
|
122 |
+
convert_unet(unet, UNET_OV_PATH)
|
123 |
+
gc.collect()
|
124 |
+
else:
|
125 |
+
print(f"Unet will be loaded from {UNET_OV_PATH}")
|
126 |
+
del unet
|
127 |
+
gc.collect()
|
128 |
+
|
129 |
+
VAE_ENCODER_OV_PATH = Path("vae_encoder.xml")
|
130 |
+
|
131 |
+
def convert_vae_encoder(vae: torch.nn.Module, ir_path: Path):
|
132 |
+
"""
|
133 |
+
Convert VAE model for encoding to IR format.
|
134 |
+
Function accepts vae model, creates wrapper class for export only necessary for inference part,
|
135 |
+
prepares example inputs for conversion,
|
136 |
+
Parameters:
|
137 |
+
vae (torch.nn.Module): VAE model from StableDiffusio pipeline
|
138 |
+
ir_path (Path): File for storing model
|
139 |
+
Returns:
|
140 |
+
None
|
141 |
+
"""
|
142 |
+
class VAEEncoderWrapper(torch.nn.Module):
|
143 |
+
def __init__(self, vae):
|
144 |
+
super().__init__()
|
145 |
+
self.vae = vae
|
146 |
+
|
147 |
+
def forward(self, image):
|
148 |
+
return self.vae.encode(x=image)["latent_dist"].sample()
|
149 |
+
vae_encoder = VAEEncoderWrapper(vae)
|
150 |
+
vae_encoder.eval()
|
151 |
+
image = torch.zeros((1, 3, 512, 512))
|
152 |
+
with torch.no_grad():
|
153 |
+
ov_model = ov.convert_model(vae_encoder, example_input=image, input=[((1,3,512,512),)])
|
154 |
+
ov.save_model(ov_model, ir_path)
|
155 |
+
del ov_model
|
156 |
+
cleanup_torchscript_cache()
|
157 |
+
print(f'VAE encoder successfully converted to IR and saved to {ir_path}')
|
158 |
+
|
159 |
+
|
160 |
+
if not VAE_ENCODER_OV_PATH.exists():
|
161 |
+
convert_vae_encoder(vae, VAE_ENCODER_OV_PATH)
|
162 |
+
else:
|
163 |
+
print(f"VAE encoder will be loaded from {VAE_ENCODER_OV_PATH}")
|
164 |
+
|
165 |
+
VAE_DECODER_OV_PATH = Path('vae_decoder.xml')
|
166 |
+
|
167 |
+
def convert_vae_decoder(vae: torch.nn.Module, ir_path: Path):
|
168 |
+
"""
|
169 |
+
Convert VAE model for decoding to IR format.
|
170 |
+
Function accepts vae model, creates wrapper class for export only necessary for inference part,
|
171 |
+
prepares example inputs for conversion,
|
172 |
+
Parameters:
|
173 |
+
vae (torch.nn.Module): VAE model frm StableDiffusion pipeline
|
174 |
+
ir_path (Path): File for storing model
|
175 |
+
Returns:
|
176 |
+
None
|
177 |
+
"""
|
178 |
+
class VAEDecoderWrapper(torch.nn.Module):
|
179 |
+
def __init__(self, vae):
|
180 |
+
super().__init__()
|
181 |
+
self.vae = vae
|
182 |
+
|
183 |
+
def forward(self, latents):
|
184 |
+
return self.vae.decode(latents)
|
185 |
+
|
186 |
+
vae_decoder = VAEDecoderWrapper(vae)
|
187 |
+
latents = torch.zeros((1, 4, 64, 64))
|
188 |
+
|
189 |
+
vae_decoder.eval()
|
190 |
+
with torch.no_grad():
|
191 |
+
ov_model = ov.convert_model(vae_decoder, example_input=latents, input=[((1,4,64,64),)])
|
192 |
+
ov.save_model(ov_model, ir_path)
|
193 |
+
del ov_model
|
194 |
+
cleanup_torchscript_cache()
|
195 |
+
print(f'VAE decoder successfully converted to IR and saved to {ir_path}')
|
196 |
+
|
197 |
+
|
198 |
+
if not VAE_DECODER_OV_PATH.exists():
|
199 |
+
convert_vae_decoder(vae, VAE_DECODER_OV_PATH)
|
200 |
+
else:
|
201 |
+
print(f"VAE decoder will be loaded from {VAE_DECODER_OV_PATH}")
|
202 |
+
|
203 |
+
del vae
|
204 |
+
gc.collect()
|
205 |
+
|
206 |
+
import inspect
|
207 |
+
from typing import List, Optional, Union, Dict
|
208 |
+
|
209 |
+
import PIL
|
210 |
+
import cv2
|
211 |
+
|
212 |
+
from transformers import CLIPTokenizer
|
213 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
214 |
+
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
215 |
+
from openvino.runtime import Model
|
216 |
+
|
217 |
+
|
218 |
+
def scale_fit_to_window(dst_width:int, dst_height:int, image_width:int, image_height:int):
|
219 |
+
"""
|
220 |
+
Preprocessing helper function for calculating image size for resize with peserving original aspect ratio
|
221 |
+
and fitting image to specific window size
|
222 |
+
|
223 |
+
Parameters:
|
224 |
+
dst_width (int): destination window width
|
225 |
+
dst_height (int): destination window height
|
226 |
+
image_width (int): source image width
|
227 |
+
image_height (int): source image height
|
228 |
+
Returns:
|
229 |
+
result_width (int): calculated width for resize
|
230 |
+
result_height (int): calculated height for resize
|
231 |
+
"""
|
232 |
+
im_scale = min(dst_height / image_height, dst_width / image_width)
|
233 |
+
return int(im_scale * image_width), int(im_scale * image_height)
|
234 |
+
|
235 |
+
|
236 |
+
def preprocess(image: PIL.Image.Image):
|
237 |
+
"""
|
238 |
+
Image preprocessing function. Takes image in PIL.Image format, resizes it to keep aspect ration and fits to model input window 512x512,
|
239 |
+
then converts it to np.ndarray and adds padding with zeros on right or bottom side of image (depends from aspect ratio), after that
|
240 |
+
converts data to float32 data type and change range of values from [0, 255] to [-1, 1], finally, converts data layout from planar NHWC to NCHW.
|
241 |
+
The function returns preprocessed input tensor and padding size, which can be used in postprocessing.
|
242 |
+
|
243 |
+
Parameters:
|
244 |
+
image (PIL.Image.Image): input image
|
245 |
+
Returns:
|
246 |
+
image (np.ndarray): preprocessed image tensor
|
247 |
+
meta (Dict): dictionary with preprocessing metadata info
|
248 |
+
"""
|
249 |
+
src_width, src_height = image.size
|
250 |
+
dst_width, dst_height = scale_fit_to_window(
|
251 |
+
512, 512, src_width, src_height)
|
252 |
+
image = np.array(image.resize((dst_width, dst_height),
|
253 |
+
resample=PIL.Image.Resampling.LANCZOS))[None, :]
|
254 |
+
pad_width = 512 - dst_width
|
255 |
+
pad_height = 512 - dst_height
|
256 |
+
pad = ((0, 0), (0, pad_height), (0, pad_width), (0, 0))
|
257 |
+
image = np.pad(image, pad, mode="constant")
|
258 |
+
image = image.astype(np.float32) / 255.0
|
259 |
+
image = 2.0 * image - 1.0
|
260 |
+
image = image.transpose(0, 3, 1, 2)
|
261 |
+
return image, {"padding": pad, "src_width": src_width, "src_height": src_height}
|
262 |
+
|
263 |
+
|
264 |
+
class OVStableDiffusionPipeline(DiffusionPipeline):
|
265 |
+
def __init__(
|
266 |
+
self,
|
267 |
+
vae_decoder: Model,
|
268 |
+
text_encoder: Model,
|
269 |
+
tokenizer: CLIPTokenizer,
|
270 |
+
unet: Model,
|
271 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
272 |
+
vae_encoder: Model = None,
|
273 |
+
):
|
274 |
+
"""
|
275 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
276 |
+
Parameters:
|
277 |
+
vae (Model):
|
278 |
+
Variational Auto-Encoder (VAE) Model to decode images to and from latent representations.
|
279 |
+
text_encoder (Model):
|
280 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
281 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
282 |
+
the clip-vit-large-patch14(https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
283 |
+
tokenizer (CLIPTokenizer):
|
284 |
+
Tokenizer of class CLIPTokenizer(https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
285 |
+
unet (Model): Conditional U-Net architecture to denoise the encoded image latents.
|
286 |
+
scheduler (SchedulerMixin):
|
287 |
+
A scheduler to be used in combination with unet to denoise the encoded image latents. Can be one of
|
288 |
+
DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler.
|
289 |
+
"""
|
290 |
+
super().__init__()
|
291 |
+
self.scheduler = scheduler
|
292 |
+
self.vae_decoder = vae_decoder
|
293 |
+
self.vae_encoder = vae_encoder
|
294 |
+
self.text_encoder = text_encoder
|
295 |
+
self.unet = unet
|
296 |
+
self._text_encoder_output = text_encoder.output(0)
|
297 |
+
self._unet_output = unet.output(0)
|
298 |
+
self._vae_d_output = vae_decoder.output(0)
|
299 |
+
self._vae_e_output = vae_encoder.output(0) if vae_encoder is not None else None
|
300 |
+
self.height = 512
|
301 |
+
self.width = 512
|
302 |
+
self.tokenizer = tokenizer
|
303 |
+
|
304 |
+
def __call__(
|
305 |
+
self,
|
306 |
+
prompt: Union[str, List[str]],
|
307 |
+
image: PIL.Image.Image = None,
|
308 |
+
num_inference_steps: Optional[int] = 50,
|
309 |
+
negative_prompt: Union[str, List[str]] = None,
|
310 |
+
guidance_scale: Optional[float] = 7.5,
|
311 |
+
eta: Optional[float] = 0.0,
|
312 |
+
output_type: Optional[str] = "pil",
|
313 |
+
seed: Optional[int] = None,
|
314 |
+
strength: float = 1.0,
|
315 |
+
gif: Optional[bool] = False,
|
316 |
+
**kwargs,
|
317 |
+
):
|
318 |
+
"""
|
319 |
+
Function invoked when calling the pipeline for generation.
|
320 |
+
Parameters:
|
321 |
+
prompt (str or List[str]):
|
322 |
+
The prompt or prompts to guide the image generation.
|
323 |
+
image (PIL.Image.Image, *optional*, None):
|
324 |
+
Intinal image for generation.
|
325 |
+
num_inference_steps (int, *optional*, defaults to 50):
|
326 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
327 |
+
expense of slower inference.
|
328 |
+
negative_prompt (str or List[str]):
|
329 |
+
The negative prompt or prompts to guide the image generation.
|
330 |
+
guidance_scale (float, *optional*, defaults to 7.5):
|
331 |
+
Guidance scale as defined in Classifier-Free Diffusion Guidance(https://arxiv.org/abs/2207.12598).
|
332 |
+
guidance_scale is defined as `w` of equation 2.
|
333 |
+
Higher guidance scale encourages to generate images that are closely linked to the text prompt,
|
334 |
+
usually at the expense of lower image quality.
|
335 |
+
eta (float, *optional*, defaults to 0.0):
|
336 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
337 |
+
[DDIMScheduler], will be ignored for others.
|
338 |
+
output_type (`str`, *optional*, defaults to "pil"):
|
339 |
+
The output format of the generate image. Choose between
|
340 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): PIL.Image.Image or np.array.
|
341 |
+
seed (int, *optional*, None):
|
342 |
+
Seed for random generator state initialization.
|
343 |
+
gif (bool, *optional*, False):
|
344 |
+
Flag for storing all steps results or not.
|
345 |
+
Returns:
|
346 |
+
Dictionary with keys:
|
347 |
+
sample - the last generated image PIL.Image.Image or np.array
|
348 |
+
iterations - *optional* (if gif=True) images for all diffusion steps, List of PIL.Image.Image or np.array.
|
349 |
+
"""
|
350 |
+
if seed is not None:
|
351 |
+
np.random.seed(seed)
|
352 |
+
|
353 |
+
img_buffer = []
|
354 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
355 |
+
# get prompt text embeddings
|
356 |
+
text_embeddings = self._encode_prompt(prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt)
|
357 |
+
|
358 |
+
# set timesteps
|
359 |
+
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
360 |
+
extra_set_kwargs = {}
|
361 |
+
if accepts_offset:
|
362 |
+
extra_set_kwargs["offset"] = 1
|
363 |
+
|
364 |
+
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
365 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
|
366 |
+
latent_timestep = timesteps[:1]
|
367 |
+
|
368 |
+
# get the initial random noise unless the user supplied it
|
369 |
+
latents, meta = self.prepare_latents(image, latent_timestep)
|
370 |
+
|
371 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
372 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
373 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
374 |
+
# and should be between [0, 1]
|
375 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
376 |
+
extra_step_kwargs = {}
|
377 |
+
if accepts_eta:
|
378 |
+
extra_step_kwargs["eta"] = eta
|
379 |
+
|
380 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
381 |
+
# expand the latents if you are doing classifier free guidance
|
382 |
+
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
|
383 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
384 |
+
|
385 |
+
# predict the noise residual
|
386 |
+
noise_pred = self.unet([latent_model_input, t, text_embeddings])[self._unet_output]
|
387 |
+
# perform guidance
|
388 |
+
if do_classifier_free_guidance:
|
389 |
+
noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1]
|
390 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
391 |
+
|
392 |
+
# compute the previous noisy sample x_t -> x_t-1
|
393 |
+
latents = self.scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)["prev_sample"].numpy()
|
394 |
+
if gif:
|
395 |
+
image = self.vae_decoder(latents * (1 / 0.18215))[self._vae_d_output]
|
396 |
+
image = self.postprocess_image(image, meta, output_type)
|
397 |
+
img_buffer.extend(image)
|
398 |
+
|
399 |
+
# scale and decode the image latents with vae
|
400 |
+
image = self.vae_decoder(latents * (1 / 0.18215))[self._vae_d_output]
|
401 |
+
|
402 |
+
image = self.postprocess_image(image, meta, output_type)
|
403 |
+
return {"sample": image, 'iterations': img_buffer}
|
404 |
+
|
405 |
+
def _encode_prompt(self, prompt:Union[str, List[str]], num_images_per_prompt:int = 1, do_classifier_free_guidance:bool = True, negative_prompt:Union[str, List[str]] = None):
|
406 |
+
"""
|
407 |
+
Encodes the prompt into text encoder hidden states.
|
408 |
+
|
409 |
+
Parameters:
|
410 |
+
prompt (str or list(str)): prompt to be encoded
|
411 |
+
num_images_per_prompt (int): number of images that should be generated per prompt
|
412 |
+
do_classifier_free_guidance (bool): whether to use classifier free guidance or not
|
413 |
+
negative_prompt (str or list(str)): negative prompt to be encoded
|
414 |
+
Returns:
|
415 |
+
text_embeddings (np.ndarray): text encoder hidden states
|
416 |
+
"""
|
417 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
418 |
+
|
419 |
+
# tokenize input prompts
|
420 |
+
text_inputs = self.tokenizer(
|
421 |
+
prompt,
|
422 |
+
padding="max_length",
|
423 |
+
max_length=self.tokenizer.model_max_length,
|
424 |
+
truncation=True,
|
425 |
+
return_tensors="np",
|
426 |
+
)
|
427 |
+
text_input_ids = text_inputs.input_ids
|
428 |
+
|
429 |
+
text_embeddings = self.text_encoder(
|
430 |
+
text_input_ids)[self._text_encoder_output]
|
431 |
+
|
432 |
+
# duplicate text embeddings for each generation per prompt
|
433 |
+
if num_images_per_prompt != 1:
|
434 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
435 |
+
text_embeddings = np.tile(
|
436 |
+
text_embeddings, (1, num_images_per_prompt, 1))
|
437 |
+
text_embeddings = np.reshape(
|
438 |
+
text_embeddings, (bs_embed * num_images_per_prompt, seq_len, -1))
|
439 |
+
|
440 |
+
# get unconditional embeddings for classifier free guidance
|
441 |
+
if do_classifier_free_guidance:
|
442 |
+
uncond_tokens: List[str]
|
443 |
+
max_length = text_input_ids.shape[-1]
|
444 |
+
if negative_prompt is None:
|
445 |
+
uncond_tokens = [""] * batch_size
|
446 |
+
elif isinstance(negative_prompt, str):
|
447 |
+
uncond_tokens = [negative_prompt]
|
448 |
+
else:
|
449 |
+
uncond_tokens = negative_prompt
|
450 |
+
uncond_input = self.tokenizer(
|
451 |
+
uncond_tokens,
|
452 |
+
padding="max_length",
|
453 |
+
max_length=max_length,
|
454 |
+
truncation=True,
|
455 |
+
return_tensors="np",
|
456 |
+
)
|
457 |
+
|
458 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids)[self._text_encoder_output]
|
459 |
+
|
460 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
461 |
+
seq_len = uncond_embeddings.shape[1]
|
462 |
+
uncond_embeddings = np.tile(uncond_embeddings, (1, num_images_per_prompt, 1))
|
463 |
+
uncond_embeddings = np.reshape(uncond_embeddings, (batch_size * num_images_per_prompt, seq_len, -1))
|
464 |
+
|
465 |
+
# For classifier free guidance, we need to do two forward passes.
|
466 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
467 |
+
# to avoid doing two forward passes
|
468 |
+
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
|
469 |
+
|
470 |
+
return text_embeddings
|
471 |
+
|
472 |
+
|
473 |
+
def prepare_latents(self, image:PIL.Image.Image = None, latent_timestep:torch.Tensor = None):
|
474 |
+
"""
|
475 |
+
Function for getting initial latents for starting generation
|
476 |
+
|
477 |
+
Parameters:
|
478 |
+
image (PIL.Image.Image, *optional*, None):
|
479 |
+
Input image for generation, if not provided randon noise will be used as starting point
|
480 |
+
latent_timestep (torch.Tensor, *optional*, None):
|
481 |
+
Predicted by scheduler initial step for image generation, required for latent image mixing with nosie
|
482 |
+
Returns:
|
483 |
+
latents (np.ndarray):
|
484 |
+
Image encoded in latent space
|
485 |
+
"""
|
486 |
+
latents_shape = (1, 4, self.height // 8, self.width // 8)
|
487 |
+
noise = np.random.randn(*latents_shape).astype(np.float32)
|
488 |
+
if image is None:
|
489 |
+
# if you use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
|
490 |
+
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
491 |
+
noise = noise * self.scheduler.sigmas[0].numpy()
|
492 |
+
return noise, {}
|
493 |
+
input_image, meta = preprocess(image)
|
494 |
+
latents = self.vae_encoder(input_image)[self._vae_e_output] * 0.18215
|
495 |
+
latents = self.scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy()
|
496 |
+
return latents, meta
|
497 |
+
|
498 |
+
def postprocess_image(self, image:np.ndarray, meta:Dict, output_type:str = "pil"):
|
499 |
+
"""
|
500 |
+
Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initila image size (if required),
|
501 |
+
normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format
|
502 |
+
|
503 |
+
Parameters:
|
504 |
+
image (np.ndarray):
|
505 |
+
Generated image
|
506 |
+
meta (Dict):
|
507 |
+
Metadata obtained on latents preparing step, can be empty
|
508 |
+
output_type (str, *optional*, pil):
|
509 |
+
Output format for result, can be pil or numpy
|
510 |
+
Returns:
|
511 |
+
image (List of np.ndarray or PIL.Image.Image):
|
512 |
+
Postprocessed images
|
513 |
+
"""
|
514 |
+
if "padding" in meta:
|
515 |
+
pad = meta["padding"]
|
516 |
+
(_, end_h), (_, end_w) = pad[1:3]
|
517 |
+
h, w = image.shape[2:]
|
518 |
+
unpad_h = h - end_h
|
519 |
+
unpad_w = w - end_w
|
520 |
+
image = image[:, :, :unpad_h, :unpad_w]
|
521 |
+
image = np.clip(image / 2 + 0.5, 0, 1)
|
522 |
+
image = np.transpose(image, (0, 2, 3, 1))
|
523 |
+
# 9. Convert to PIL
|
524 |
+
if output_type == "pil":
|
525 |
+
image = self.numpy_to_pil(image)
|
526 |
+
if "src_height" in meta:
|
527 |
+
orig_height, orig_width = meta["src_height"], meta["src_width"]
|
528 |
+
image = [img.resize((orig_width, orig_height),
|
529 |
+
PIL.Image.Resampling.LANCZOS) for img in image]
|
530 |
+
else:
|
531 |
+
if "src_height" in meta:
|
532 |
+
orig_height, orig_width = meta["src_height"], meta["src_width"]
|
533 |
+
image = [cv2.resize(img, (orig_width, orig_width))
|
534 |
+
for img in image]
|
535 |
+
return image
|
536 |
+
|
537 |
+
def get_timesteps(self, num_inference_steps:int, strength:float):
|
538 |
+
"""
|
539 |
+
Helper function for getting scheduler timesteps for generation
|
540 |
+
In case of image-to-image generation, it updates number of steps according to strength
|
541 |
+
|
542 |
+
Parameters:
|
543 |
+
num_inference_steps (int):
|
544 |
+
number of inference steps for generation
|
545 |
+
strength (float):
|
546 |
+
value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.
|
547 |
+
Values that approach 1.0 enable lots of variations but will also produce images that are not semantically consistent with the input.
|
548 |
+
"""
|
549 |
+
# get the original timestep using init_timestep
|
550 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
551 |
+
|
552 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
553 |
+
timesteps = self.scheduler.timesteps[t_start:]
|
554 |
+
|
555 |
+
return timesteps, num_inference_steps - t_start
|
556 |
+
|
557 |
+
core = ov.Core()
|
558 |
+
|
559 |
+
"""Select device from dropdown list for running inference using OpenVINO."""
|
560 |
+
|
561 |
+
import ipywidgets as widgets
|
562 |
+
|
563 |
+
device = widgets.Dropdown(
|
564 |
+
options=core.available_devices + ["AUTO"],
|
565 |
+
value='CPU',
|
566 |
+
description='Device:',
|
567 |
+
disabled=False,
|
568 |
+
)
|
569 |
+
|
570 |
+
device
|
571 |
+
|
572 |
+
text_enc = core.compile_model(TEXT_ENCODER_OV_PATH, device.value)
|
573 |
+
|
574 |
+
unet_model = core.compile_model(UNET_OV_PATH, device.value)
|
575 |
+
|
576 |
+
ov_config = {"INFERENCE_PRECISION_HINT": "f32"} if device.value != "CPU" else {}
|
577 |
+
|
578 |
+
vae_decoder = core.compile_model(VAE_DECODER_OV_PATH, device.value, ov_config)
|
579 |
+
vae_encoder = core.compile_model(VAE_ENCODER_OV_PATH, device.value, ov_config)
|
580 |
+
|
581 |
+
"""Model tokenizer and scheduler are also important parts of the pipeline. Let us define them and put all components together"""
|
582 |
+
|
583 |
+
from transformers import CLIPTokenizer
|
584 |
+
from diffusers.schedulers import LMSDiscreteScheduler
|
585 |
+
|
586 |
+
lms = LMSDiscreteScheduler(
|
587 |
+
beta_start=0.00085,
|
588 |
+
beta_end=0.012,
|
589 |
+
beta_schedule="scaled_linear"
|
590 |
+
)
|
591 |
+
tokenizer = CLIPTokenizer.from_pretrained('openai/clip-vit-large-patch14')
|
592 |
+
|
593 |
+
ov_pipe = OVStableDiffusionPipeline(
|
594 |
+
tokenizer=tokenizer,
|
595 |
+
text_encoder=text_enc,
|
596 |
+
unet=unet_model,
|
597 |
+
vae_encoder=vae_encoder,
|
598 |
+
vae_decoder=vae_decoder,
|
599 |
+
scheduler=lms
|
600 |
+
)
|
601 |
+
|
602 |
+
"""### Text-to-Image generation
|
603 |
+
[back to top ⬆️](#Table-of-contents:)
|
604 |
+
|
605 |
+
Now, you can define a text prompt for image generation and run inference pipeline.
|
606 |
+
Optionally, you can also change the random generator seed for latent state initialization and number of steps.
|
607 |
+
|
608 |
+
> **Note**: Consider increasing `steps` to get more precise results. A suggested value is `50`, but it will take longer time to process.
|
609 |
+
"""
|
610 |
+
|
611 |
+
import ipywidgets as widgets
|
612 |
+
sample_text = ('cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting, epic composition. '
|
613 |
+
'A golden daylight, hyper-realistic environment. '
|
614 |
+
'Hyper and intricate detail, photo-realistic. '
|
615 |
+
'Cinematic and volumetric light. '
|
616 |
+
'Epic concept art. '
|
617 |
+
'Octane render and Unreal Engine, trending on artstation')
|
618 |
+
text_prompt = widgets.Text(value=sample_text, description='your text')
|
619 |
+
num_steps = widgets.IntSlider(min=1, max=50, value=20, description='steps:')
|
620 |
+
seed = widgets.IntSlider(min=0, max=10000000, description='seed: ', value=42)
|
621 |
+
widgets.VBox([text_prompt, seed, num_steps])
|
622 |
+
|
623 |
+
print('Pipeline settings')
|
624 |
+
print(f'Input text: {text_prompt.value}')
|
625 |
+
print(f'Seed: {seed.value}')
|
626 |
+
print(f'Number of steps: {num_steps.value}')
|
627 |
+
|
628 |
+
result = ov_pipe(text_prompt.value, num_inference_steps=num_steps.value, seed=seed.value)
|
629 |
+
|
630 |
+
"""Finally, let us save generation results.
|
631 |
+
The pipeline returns several results: `sample` contains final generated image, `iterations` contains list of intermediate results for each step.
|
632 |
+
"""
|
633 |
+
|
634 |
+
final_image = result['sample'][0]
|
635 |
+
if result['iterations']:
|
636 |
+
all_frames = result['iterations']
|
637 |
+
img = next(iter(all_frames))
|
638 |
+
img.save(fp='result.gif', format='GIF', append_images=iter(all_frames), save_all=True, duration=len(all_frames) * 5, loop=0)
|
639 |
+
final_image.save('result.png')
|
640 |
+
|
641 |
+
"""Now is show time!"""
|
642 |
+
|
643 |
+
import ipywidgets as widgets
|
644 |
+
|
645 |
+
text = '\n\t'.join(text_prompt.value.split('.'))
|
646 |
+
print("Input text:")
|
647 |
+
print("\t" + text)
|
648 |
+
display(final_image)
|
649 |
+
|
650 |
+
"""Nice. As you can see, the picture has quite a high definition 🔥."""
|
651 |
+
|
652 |
+
import gradio as gr
|
653 |
+
|
654 |
+
def generate_from_text(text, seed, num_steps, _=gr.Progress(track_tqdm=True)):
|
655 |
+
result = ov_pipe(text, num_inference_steps=num_steps, seed=seed)
|
656 |
+
return result["sample"][0]
|
657 |
+
|
658 |
+
with gr.Blocks() as demo:
|
659 |
+
with gr.Tab("Text-to-Image generation"):
|
660 |
+
with gr.Row():
|
661 |
+
with gr.Column():
|
662 |
+
text_input = gr.Textbox(lines=3, label="Text")
|
663 |
+
seed_input = gr.Slider(0, 10000000, value=42, label="Seed")
|
664 |
+
steps_input = gr.Slider(1, 50, value=20, step=1, label="Steps")
|
665 |
+
out = gr.Image(label="Result", type="pil")
|
666 |
+
btn = gr.Button()
|
667 |
+
btn.click(generate_from_text, [text_input, seed_input, steps_input], out)
|
668 |
+
|
669 |
+
# Remove the "Image-to-Image generation" tab and its content
|
670 |
+
|
671 |
+
try:
|
672 |
+
demo.launch(debug=True)
|
673 |
+
except Exception:
|
674 |
+
demo.launch(share=True, debug=True)
|
675 |
+
|
676 |
+
!ls # List files in the current directory
|
677 |
+
|
678 |
+
!echo "Hello, World!" # Print a message
|
679 |
+
|
680 |
+
!gradio deploy
|
681 |
+
|