Spaces:
Sleeping
Sleeping
File size: 2,878 Bytes
9988675 e984380 f4eba6c e984380 f4eba6c e984380 f4eba6c e984380 f4eba6c e984380 f4eba6c e984380 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
title: Vocca-ai Prototype
emoji: π
colorFrom: red
colorTo: blue
sdk: streamlit
sdk_version: 1.42.0
app_file: app.py
pinned: false
---
# MedCall AI - Call Analysis
## What is this?
MedCall AI is a tool that helps analyze patient calls. It figures out the callerβs intent, urgency, and mood, then generates a useful AI response. This makes handling medical calls easier and faster.
## Features
- **Summarizes Calls**: Takes a long call transcript and shortens it.
- **Understands Intent**: Detects if the caller wants an appointment, medical advice, billing help, etc.
- **Checks Urgency**: Decides if the request is urgent or not.
- **Analyzes Sentiment**: Detects if the caller is worried, neutral, or positive.
- **Stores Call Logs**: Saves call details in a database for reference.
- **Easy-to-Use Interface**: Built using Streamlit for a simple web-based UI.
## Whatβs Inside?
```
βββ app.py # Main application (UI)
βββ vocca_ai/
β βββ ai_response.py # Call summarization
β βββ intent_classifier.py # Intent detection
β βββ sentiment.py # Sentiment analysis
β βββ db_handler.py # Saves call logs
β βββ preprocess.py # Urgency scoring
βββ requirements.txt # Required dependencies
βββ README.md # This file
```
## How to Set Up
1. Clone the repository:
```sh
git clone https://huggingface.co./spaces/Yuvrajspd09/MedCall-AI
```
2. Move into the project folder:
```sh
cd MedCall-AI
```
3. Set up a virtual environment:
```sh
python -m venv venv
source venv/bin/activate # Windows: `venv\Scripts\activate`
```
4. Install necessary libraries:
```sh
pip install -r requirements.txt
```
## How to Use It
Run the application:
```sh
streamlit run app.py
```
### Example Usage
#### Summarizing a Call
```python
from vocca_ai.ai_response import generate_call_summary
sample_text = "I need an appointment as soon as possible."
summary = generate_call_summary(sample_text)
print(f"Summary: {summary}")
```
#### Detecting Intent
```python
from vocca_ai.intent_classifier import classify_intent
sample_text = "I want to book an appointment."
intent = classify_intent(sample_text)
print(f"Intent: {intent}")
```
#### Checking Sentiment
```python
from vocca_ai.sentiment import analyze_sentiment
sample_text = "I have been feeling really sick."
sentiment = analyze_sentiment(sample_text)
print(f"Sentiment: {sentiment}")
```
#### Logging Calls
```python
from vocca_ai.db_handler import log_call
log_call("I need an appointment", "appointment", "Low", "Neutral", "You can book an appointment online.")
```
## Want to Help?
If youβd like to improve this project, feel free to fork it, make changes, and submit a pull request!
## License
This project is open-source under the MIT License.
|