Yuliang commited on
Commit
96d77c3
·
1 Parent(s): a89c249

add whl for kaolin

Browse files
Files changed (2) hide show
  1. app.py +6 -6
  2. apps/infer.py +23 -24
app.py CHANGED
@@ -10,11 +10,12 @@ import subprocess
10
 
11
  if os.getenv('SYSTEM') == 'spaces':
12
  subprocess.run('pip install pyembree'.split())
13
- subprocess.run('pip install git+https://github.com/YuliangXiu/rembg.git@hf'.split())
 
14
  subprocess.run(
15
  'pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html'.split())
16
  subprocess.run(
17
- 'pip wheel git+https://github.com/YuliangXiu/kaolin.git -w /home/user/app && pip install /home/user/app/kaolin-0.11.0-cp38-cp38-linux_x86_64.whl', shell=True)
18
  subprocess.run('pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_cu113_pyt1110/download.html'.split())
19
  subprocess.run(
20
  'pip install git+https://github.com/Project-Splinter/human_det.git'.split())
@@ -94,7 +95,8 @@ def generate_image(seed, psi):
94
 
95
  random.seed(2022)
96
  model_types = ['icon-filter', 'pifu', 'pamir']
97
- examples = [[item, random.choice(model_types)] for item in glob.glob('examples/*.png')]
 
98
 
99
  with gr.Blocks() as demo:
100
  gr.Markdown(description)
@@ -139,11 +141,9 @@ with gr.Blocks() as demo:
139
  clear_color=[0.0, 0.0, 0.0, 0.0], label="Refined Recon")
140
  out_final_download = gr.File(
141
  label="Download refined clothed human mesh")
142
- out_kaolin_download = gr.File(
143
- label="Kaolin")
144
 
145
  out_lst = [out_smpl, out_smpl_download, out_smpl_npy_download, out_recon, out_recon_download,
146
- out_final, out_final_download, out_vid, out_vid_download, overlap_inp, out_kaolin_download]
147
 
148
  btn_submit.click(fn=generate_model, inputs=[
149
  inp, radio_choice], outputs=out_lst)
 
10
 
11
  if os.getenv('SYSTEM') == 'spaces':
12
  subprocess.run('pip install pyembree'.split())
13
+ subprocess.run(
14
+ 'pip install git+https://github.com/YuliangXiu/rembg.git@hf'.split())
15
  subprocess.run(
16
  'pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html'.split())
17
  subprocess.run(
18
+ 'pip install https://download.is.tue.mpg.de/icon/HF/kaolin-0.11.0-cp38-cp38-linux_x86_64.whl'.split())
19
  subprocess.run('pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_cu113_pyt1110/download.html'.split())
20
  subprocess.run(
21
  'pip install git+https://github.com/Project-Splinter/human_det.git'.split())
 
95
 
96
  random.seed(2022)
97
  model_types = ['icon-filter', 'pifu', 'pamir']
98
+ examples = [[item, random.choice(model_types)]
99
+ for item in glob.glob('examples/*.png')]
100
 
101
  with gr.Blocks() as demo:
102
  gr.Markdown(description)
 
141
  clear_color=[0.0, 0.0, 0.0, 0.0], label="Refined Recon")
142
  out_final_download = gr.File(
143
  label="Download refined clothed human mesh")
 
 
144
 
145
  out_lst = [out_smpl, out_smpl_download, out_smpl_npy_download, out_recon, out_recon_download,
146
+ out_final, out_final_download, out_vid, out_vid_download, overlap_inp]
147
 
148
  btn_submit.click(fn=generate_model, inputs=[
149
  inp, radio_choice], outputs=out_lst)
apps/infer.py CHANGED
@@ -14,7 +14,8 @@
14
  #
15
  # Contact: [email protected]
16
 
17
- import os, gc
 
18
 
19
  import logging
20
  from lib.common.config import cfg
@@ -46,7 +47,7 @@ logging.getLogger("trimesh").setLevel(logging.ERROR)
46
 
47
 
48
  def generate_model(in_path, model_type):
49
-
50
  torch.cuda.empty_cache()
51
 
52
  config_dict = {'loop_smpl': 100,
@@ -59,7 +60,7 @@ def generate_model(in_path, model_type):
59
  # cfg read and merge
60
  cfg.merge_from_file(config_dict['config'])
61
  cfg.merge_from_file("./lib/pymaf/configs/pymaf_config.yaml")
62
-
63
  os.makedirs(config_dict['out_dir'], exist_ok=True)
64
 
65
  cfg_show_list = [
@@ -262,7 +263,6 @@ def generate_model(in_path, model_type):
262
  os.makedirs(os.path.join(config_dict['out_dir'],
263
  cfg.name, "obj"), exist_ok=True)
264
 
265
-
266
  norm_pred = (
267
  ((in_tensor["normal_F"][0].permute(1, 2, 0) + 1.0) * 255.0 / 2.0)
268
  .detach()
@@ -334,7 +334,8 @@ def generate_model(in_path, model_type):
334
  recon_obj = trimesh.Trimesh(
335
  verts_pr, faces_pr, process=False, maintains_order=True
336
  )
337
- recon_obj.visual.vertex_colors = (recon_obj.vertex_normals+1.0)*255.0*0.5
 
338
  recon_obj.export(
339
  os.path.join(config_dict['out_dir'], cfg.name,
340
  f"obj/{data['name']}_recon.obj")
@@ -343,7 +344,7 @@ def generate_model(in_path, model_type):
343
  os.path.join(config_dict['out_dir'], cfg.name,
344
  f"obj/{data['name']}_recon.glb")
345
  )
346
-
347
  # Isotropic Explicit Remeshing for better geometry topology
348
  verts_refine, faces_refine = remesh(os.path.join(config_dict['out_dir'], cfg.name,
349
  f"obj/{data['name']}_recon.obj"), 0.5, device)
@@ -411,23 +412,21 @@ def generate_model(in_path, model_type):
411
  optimizer_cloth.step()
412
  scheduler_cloth.step(cloth_loss)
413
 
414
-
415
  final = trimesh.Trimesh(
416
  mesh_pr.verts_packed().detach().squeeze(0).cpu(),
417
  mesh_pr.faces_packed().detach().squeeze(0).cpu(),
418
  process=False, maintains_order=True
419
  )
420
-
421
-
422
  # without front texture
423
- final_colors = (mesh_pr.verts_normals_padded().squeeze(0).detach().cpu() + 1.0) * 0.5 * 255.0
 
424
  final.visual.vertex_colors = final_colors
425
  final.export(
426
  f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.obj")
427
  final.export(
428
  f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.glb")
429
 
430
-
431
  # always export visualized video regardless of the cloth refinment
432
  if final is not None:
433
  verts_lst = [verts_pr, final.vertices]
@@ -444,7 +443,7 @@ def generate_model(in_path, model_type):
444
  os.path.join(config_dict['out_dir'], cfg.name,
445
  f"vid/{data['name']}_cloth.mp4"),
446
  )
447
-
448
  smpl_obj_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.obj"
449
  smpl_glb_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.glb"
450
  smpl_npy_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.npy"
@@ -452,21 +451,21 @@ def generate_model(in_path, model_type):
452
  recon_glb_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_recon.glb"
453
  refine_obj_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.obj"
454
  refine_glb_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.glb"
455
-
456
- video_path = os.path.join(config_dict['out_dir'], cfg.name, f"vid/{data['name']}_cloth.mp4")
457
- overlap_path = os.path.join(config_dict['out_dir'], cfg.name, f"png/{data['name']}_overlap.png")
458
-
 
 
459
  # clean all the variables
460
  for element in dir():
461
  if 'path' not in element:
462
  del locals()[element]
463
  gc.collect()
464
  torch.cuda.empty_cache()
465
-
466
- kaolin_path = "/home/user/app/kaolin-0.11.0-cp38-cp38-linux_x86_64.whl"
467
-
468
- return [smpl_glb_path, smpl_obj_path,
469
- smpl_npy_path,
470
- recon_glb_path, recon_obj_path,
471
- refine_glb_path, refine_obj_path,
472
- video_path, video_path, overlap_path, kaolin_path]
 
14
  #
15
  # Contact: [email protected]
16
 
17
+ import os
18
+ import gc
19
 
20
  import logging
21
  from lib.common.config import cfg
 
47
 
48
 
49
  def generate_model(in_path, model_type):
50
+
51
  torch.cuda.empty_cache()
52
 
53
  config_dict = {'loop_smpl': 100,
 
60
  # cfg read and merge
61
  cfg.merge_from_file(config_dict['config'])
62
  cfg.merge_from_file("./lib/pymaf/configs/pymaf_config.yaml")
63
+
64
  os.makedirs(config_dict['out_dir'], exist_ok=True)
65
 
66
  cfg_show_list = [
 
263
  os.makedirs(os.path.join(config_dict['out_dir'],
264
  cfg.name, "obj"), exist_ok=True)
265
 
 
266
  norm_pred = (
267
  ((in_tensor["normal_F"][0].permute(1, 2, 0) + 1.0) * 255.0 / 2.0)
268
  .detach()
 
334
  recon_obj = trimesh.Trimesh(
335
  verts_pr, faces_pr, process=False, maintains_order=True
336
  )
337
+ recon_obj.visual.vertex_colors = (
338
+ recon_obj.vertex_normals+1.0)*255.0*0.5
339
  recon_obj.export(
340
  os.path.join(config_dict['out_dir'], cfg.name,
341
  f"obj/{data['name']}_recon.obj")
 
344
  os.path.join(config_dict['out_dir'], cfg.name,
345
  f"obj/{data['name']}_recon.glb")
346
  )
347
+
348
  # Isotropic Explicit Remeshing for better geometry topology
349
  verts_refine, faces_refine = remesh(os.path.join(config_dict['out_dir'], cfg.name,
350
  f"obj/{data['name']}_recon.obj"), 0.5, device)
 
412
  optimizer_cloth.step()
413
  scheduler_cloth.step(cloth_loss)
414
 
 
415
  final = trimesh.Trimesh(
416
  mesh_pr.verts_packed().detach().squeeze(0).cpu(),
417
  mesh_pr.faces_packed().detach().squeeze(0).cpu(),
418
  process=False, maintains_order=True
419
  )
420
+
 
421
  # without front texture
422
+ final_colors = (mesh_pr.verts_normals_padded().squeeze(
423
+ 0).detach().cpu() + 1.0) * 0.5 * 255.0
424
  final.visual.vertex_colors = final_colors
425
  final.export(
426
  f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.obj")
427
  final.export(
428
  f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.glb")
429
 
 
430
  # always export visualized video regardless of the cloth refinment
431
  if final is not None:
432
  verts_lst = [verts_pr, final.vertices]
 
443
  os.path.join(config_dict['out_dir'], cfg.name,
444
  f"vid/{data['name']}_cloth.mp4"),
445
  )
446
+
447
  smpl_obj_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.obj"
448
  smpl_glb_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.glb"
449
  smpl_npy_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.npy"
 
451
  recon_glb_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_recon.glb"
452
  refine_obj_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.obj"
453
  refine_glb_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.glb"
454
+
455
+ video_path = os.path.join(
456
+ config_dict['out_dir'], cfg.name, f"vid/{data['name']}_cloth.mp4")
457
+ overlap_path = os.path.join(
458
+ config_dict['out_dir'], cfg.name, f"png/{data['name']}_overlap.png")
459
+
460
  # clean all the variables
461
  for element in dir():
462
  if 'path' not in element:
463
  del locals()[element]
464
  gc.collect()
465
  torch.cuda.empty_cache()
466
+
467
+ return [smpl_glb_path, smpl_obj_path,
468
+ smpl_npy_path,
469
+ recon_glb_path, recon_obj_path,
470
+ refine_glb_path, refine_obj_path,
471
+ video_path, video_path, overlap_path]