Adding the voice feature
Browse files- Dockerfile +9 -5
- Model.py +162 -0
- Neptune/Neptune/added_tokens.json +3 -0
- Neptune/Neptune/model.pt +3 -0
- Neptune/Neptune/special_tokens_map.json +16 -0
- Neptune/Neptune/tokenizer.json +0 -0
- Neptune/Neptune/tokenizer_config.json +66 -0
- Neptune/Neptune/unique_labels.json +1 -0
- Neptune/Neptune/vocab.txt +0 -0
- __pycache__/Model.cpython-310.pyc +0 -0
- __pycache__/app.cpython-310.pyc +0 -0
- __pycache__/helper_functions.cpython-310.pyc +0 -0
- app.py +145 -7
- helper_functions.py +181 -16
- requirements.txt +3 -1
- static/css/style2.css +49 -0
- static/js/dashboard_voice.js +54 -0
- static/js/voice.js +233 -0
- static/js/voice_backup.js +115 -0
- templates/pdf.html +3 -0
- templates/sentence.html +3 -0
- templates/voice.html +228 -0
- templates/voice_backup.html +209 -0
Dockerfile
CHANGED
@@ -1,6 +1,3 @@
|
|
1 |
-
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
-
# you will also find guides on how best to write your Dockerfile
|
3 |
-
|
4 |
FROM python:3.9
|
5 |
|
6 |
WORKDIR /code
|
@@ -8,7 +5,13 @@ WORKDIR /code
|
|
8 |
# Copy requirements.txt separately to leverage Docker layer caching
|
9 |
COPY ./requirements.txt /code/requirements.txt
|
10 |
|
11 |
-
# Install dependencies
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
13 |
|
14 |
# Set the HF_HOME environment variable
|
@@ -19,6 +22,7 @@ RUN mkdir -p $HF_HOME && chmod -R 777 $HF_HOME
|
|
19 |
|
20 |
# Copy the model files into the image
|
21 |
COPY ./DistillMDPI1 /code/DistillMDPI1
|
|
|
22 |
|
23 |
# Copy the rest of the application files
|
24 |
COPY . .
|
@@ -27,4 +31,4 @@ COPY . .
|
|
27 |
RUN mkdir -p /code/static/uploads && chmod -R 777 /code/static/uploads
|
28 |
|
29 |
# Command to run your application
|
30 |
-
CMD ["gunicorn", "-b", "0.0.0.0:7860", "app:app"]
|
|
|
|
|
|
|
|
|
1 |
FROM python:3.9
|
2 |
|
3 |
WORKDIR /code
|
|
|
5 |
# Copy requirements.txt separately to leverage Docker layer caching
|
6 |
COPY ./requirements.txt /code/requirements.txt
|
7 |
|
8 |
+
# Install system dependencies for audio processing
|
9 |
+
RUN apt-get update && apt-get install -y \
|
10 |
+
ffmpeg \
|
11 |
+
libsndfile1 \
|
12 |
+
&& rm -rf /var/lib/apt/lists/*
|
13 |
+
|
14 |
+
# Install Python dependencies
|
15 |
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
16 |
|
17 |
# Set the HF_HOME environment variable
|
|
|
22 |
|
23 |
# Copy the model files into the image
|
24 |
COPY ./DistillMDPI1 /code/DistillMDPI1
|
25 |
+
COPY ./Neptune /code/Neptune
|
26 |
|
27 |
# Copy the rest of the application files
|
28 |
COPY . .
|
|
|
31 |
RUN mkdir -p /code/static/uploads && chmod -R 777 /code/static/uploads
|
32 |
|
33 |
# Command to run your application
|
34 |
+
CMD ["gunicorn", "-b", "0.0.0.0:7860", "app:app"]
|
Model.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import numpy as np
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
import pickle
|
7 |
+
|
8 |
+
# Load the tokenizer
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("DistillMDPI1/DistillMDPI1/saved_tokenizer")
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
# Step 1: Ensure the tokenizer has the [MULT] token
|
14 |
+
tokenizer.add_special_tokens({'additional_special_tokens': ['<MULT>']})
|
15 |
+
mult_token_id = tokenizer.convert_tokens_to_ids('<MULT>')
|
16 |
+
cls_token_id = tokenizer.cls_token_id
|
17 |
+
sep_token_id = tokenizer.sep_token_id
|
18 |
+
pad_token_id = tokenizer.pad_token_id
|
19 |
+
|
20 |
+
## Voice Part functions
|
21 |
+
maxlen = 255 # maximum of length
|
22 |
+
batch_size = 32
|
23 |
+
max_pred = 5 # max tokens of prediction
|
24 |
+
n_layers = 6 # number of Encoder of Encoder Layer
|
25 |
+
n_heads = 12 # number of heads in Multi-Head Attention
|
26 |
+
d_model = 768 # Embedding Size
|
27 |
+
d_ff = 768 * 4 # 4*d_model, FeedForward dimension
|
28 |
+
d_k = d_v = 64 # dimension of K(=Q), V
|
29 |
+
n_segments = 2
|
30 |
+
vocab_size = tokenizer.vocab_size +1
|
31 |
+
|
32 |
+
def get_attn_pad_mask(seq_q, seq_k):
|
33 |
+
batch_size, len_q = seq_q.size()
|
34 |
+
batch_size, len_k = seq_k.size()
|
35 |
+
# eq(zero) is PAD token
|
36 |
+
pad_attn_mask = seq_k.data.eq(1).unsqueeze(1) # batch_size x 1 x len_k(=len_q), one is masking
|
37 |
+
return pad_attn_mask.expand(batch_size, len_q, len_k) # batch_size x len_q x len_k
|
38 |
+
|
39 |
+
class Embedding(nn.Module):
|
40 |
+
def __init__(self):
|
41 |
+
super(Embedding, self).__init__()
|
42 |
+
self.tok_embed = nn.Embedding(vocab_size, d_model) # token embedding
|
43 |
+
self.pos_embed = nn.Embedding(maxlen, d_model) # position embedding
|
44 |
+
self.seg_embed = nn.Embedding(n_segments, d_model) # segment(token type) embedding
|
45 |
+
self.norm = nn.LayerNorm(d_model)
|
46 |
+
|
47 |
+
def forward(self, x, seg):
|
48 |
+
seq_len = x.size(1)
|
49 |
+
pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
|
50 |
+
pos = pos.unsqueeze(0).expand_as(x) # (seq_len,) -> (batch_size, seq_len)
|
51 |
+
embedding = self.tok_embed(x)
|
52 |
+
embedding += self.pos_embed(pos)
|
53 |
+
embedding += self.seg_embed(seg)
|
54 |
+
return self.norm(embedding)
|
55 |
+
|
56 |
+
class ScaledDotProductAttention(nn.Module):
|
57 |
+
def __init__(self):
|
58 |
+
super(ScaledDotProductAttention, self).__init__()
|
59 |
+
|
60 |
+
def forward(self, Q, K, V, attn_mask):
|
61 |
+
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size x n_heads x len_q(=len_k) x len_k(=len_q)]
|
62 |
+
scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is one.
|
63 |
+
attn = nn.Softmax(dim=-1)(scores)
|
64 |
+
context = torch.matmul(attn, V)
|
65 |
+
return scores , context, attn
|
66 |
+
|
67 |
+
class MultiHeadAttention(nn.Module):
|
68 |
+
def __init__(self):
|
69 |
+
super(MultiHeadAttention, self).__init__()
|
70 |
+
self.W_Q = nn.Linear(d_model, d_k * n_heads)
|
71 |
+
self.W_K = nn.Linear(d_model, d_k * n_heads)
|
72 |
+
self.W_V = nn.Linear(d_model, d_v * n_heads)
|
73 |
+
self.fc = nn.Linear(n_heads * d_v, d_model)
|
74 |
+
self.norm = nn.LayerNorm(d_model)
|
75 |
+
def forward(self, Q, K, V, attn_mask):
|
76 |
+
# q: [batch_size x len_q x d_model], k: [batch_size x len_k x d_model], v: [batch_size x len_k x d_model]
|
77 |
+
residual, batch_size = Q, Q.size(0)
|
78 |
+
device = Q.device
|
79 |
+
Q, K, V = Q.to(device), K.to(device), V.to(device)
|
80 |
+
# (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
|
81 |
+
q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2) # q_s: [batch_size x n_heads x len_q x d_k]
|
82 |
+
k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,2) # k_s: [batch_size x n_heads x len_k x d_k]
|
83 |
+
v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,2) # v_s: [batch_size x n_heads x len_k x d_v]
|
84 |
+
|
85 |
+
attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size x n_heads x len_q x len_k]
|
86 |
+
|
87 |
+
# context: [batch_size x n_heads x len_q x d_v], attn: [batch_size x n_heads x len_q(=len_k) x len_k(=len_q)]
|
88 |
+
scores ,context, attn = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)
|
89 |
+
context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v) # context: [batch_size x len_q x n_heads * d_v]
|
90 |
+
output = self.fc(context)
|
91 |
+
return self.norm(output + residual), attn # output: [batch_size x len_q x d_model]
|
92 |
+
|
93 |
+
class PoswiseFeedForwardNet(nn.Module):
|
94 |
+
def __init__(self):
|
95 |
+
super(PoswiseFeedForwardNet, self).__init__()
|
96 |
+
self.fc1 = nn.Linear(d_model, d_ff)
|
97 |
+
self.fc2 = nn.Linear(d_ff, d_model)
|
98 |
+
self.gelu = nn.GELU()
|
99 |
+
def forward(self, x):
|
100 |
+
# (batch_size, len_seq, d_model) -> (batch_size, len_seq, d_ff) -> (batch_size, len_seq, d_model)
|
101 |
+
return self.fc2(self.gelu(self.fc1(x)))
|
102 |
+
|
103 |
+
class EncoderLayer(nn.Module):
|
104 |
+
def __init__(self):
|
105 |
+
super(EncoderLayer, self).__init__()
|
106 |
+
self.enc_self_attn = MultiHeadAttention()
|
107 |
+
self.pos_ffn = PoswiseFeedForwardNet()
|
108 |
+
|
109 |
+
def forward(self, enc_inputs, enc_self_attn_mask):
|
110 |
+
enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask.to(enc_inputs.device)) # enc_inputs to same Q,K,V
|
111 |
+
enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size x len_q x d_model]
|
112 |
+
return enc_outputs, attn
|
113 |
+
|
114 |
+
class BERT(nn.Module):
|
115 |
+
def __init__(self):
|
116 |
+
super(BERT, self).__init__()
|
117 |
+
self.embedding = Embedding()
|
118 |
+
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
|
119 |
+
self.fc = nn.Linear(d_model, d_model)
|
120 |
+
self.activ1 = nn.Tanh()
|
121 |
+
self.linear = nn.Linear(d_model, d_model)
|
122 |
+
self.activ2 = nn.GELU()
|
123 |
+
self.norm = nn.LayerNorm(d_model)
|
124 |
+
self.classifier = nn.Linear(d_model, 2)
|
125 |
+
# decoder is shared with embedding layer
|
126 |
+
embed_weight = self.embedding.tok_embed.weight
|
127 |
+
n_vocab, n_dim = embed_weight.size()
|
128 |
+
self.decoder = nn.Linear(n_dim, n_vocab, bias=False)
|
129 |
+
self.decoder.weight = embed_weight
|
130 |
+
self.decoder_bias = nn.Parameter(torch.zeros(n_vocab))
|
131 |
+
self.mclassifier = nn.Linear(d_model, 17)
|
132 |
+
|
133 |
+
def forward(self, input_ids, segment_ids, masked_pos):
|
134 |
+
output = self.embedding(input_ids, segment_ids)
|
135 |
+
enc_self_attn_mask = get_attn_pad_mask(input_ids, input_ids).to(output.device)
|
136 |
+
for layer in self.layers:
|
137 |
+
output, enc_self_attn = layer(output, enc_self_attn_mask)
|
138 |
+
# output : [batch_size, len, d_model], attn : [batch_size, n_heads, d_mode, d_model]
|
139 |
+
# it will be decided by first token(CLS)
|
140 |
+
h_pooled = self.activ1(self.fc(output[:, 0])) # [batch_size, d_model]
|
141 |
+
logits_clsf = self.classifier(h_pooled) # [batch_size, 2]
|
142 |
+
|
143 |
+
masked_pos = masked_pos[:, :, None].expand(-1, -1, output.size(-1)) # [batch_size, max_pred, d_model]
|
144 |
+
# get masked position from final output of transformer.
|
145 |
+
h_masked = torch.gather(output, 1, masked_pos) # masking position [batch_size, max_pred, d_model]
|
146 |
+
h_masked = self.norm(self.activ2(self.linear(h_masked)))
|
147 |
+
logits_lm = self.decoder(h_masked) + self.decoder_bias # [batch_size, max_pred, n_vocab]
|
148 |
+
|
149 |
+
h_mult_sent1 = self.activ1(self.fc(output[:, 1]))
|
150 |
+
logits_mclsf1 = self.mclassifier(h_mult_sent1)
|
151 |
+
|
152 |
+
mult2_token_id = mult_token_id # Assuming mult_token_id is defined globally
|
153 |
+
mult2_positions = (input_ids == mult2_token_id).nonzero(as_tuple=False) # Find positions of [MULT2] tokens
|
154 |
+
# Ensure there are exactly two [MULT] tokens in each input sequence
|
155 |
+
assert mult2_positions.size(0) == 2 * input_ids.size(0)
|
156 |
+
mult2_positions = mult2_positions[1::2][:, 1]
|
157 |
+
# Gather the hidden states corresponding to the second [MULT] token
|
158 |
+
h_mult_sent2 = output[torch.arange(output.size(0)), mult2_positions]
|
159 |
+
|
160 |
+
logits_mclsf2 = self.mclassifier(h_mult_sent2)
|
161 |
+
logits_mclsf2 = self.mclassifier(h_mult_sent2)
|
162 |
+
return logits_lm, logits_clsf , logits_mclsf1 , logits_mclsf2
|
Neptune/Neptune/added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<MULT>": 30522
|
3 |
+
}
|
Neptune/Neptune/model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7f0cace6edaecd1f2e30cd8cbe3ad1d6d43829c3029279308d4ebb2ec8542c0
|
3 |
+
size 269574874
|
Neptune/Neptune/special_tokens_map.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<MULT>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
}
|
10 |
+
],
|
11 |
+
"cls_token": "[CLS]",
|
12 |
+
"mask_token": "[MASK]",
|
13 |
+
"pad_token": "[PAD]",
|
14 |
+
"sep_token": "[SEP]",
|
15 |
+
"unk_token": "[UNK]"
|
16 |
+
}
|
Neptune/Neptune/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Neptune/Neptune/tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30522": {
|
44 |
+
"content": "<MULT>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"additional_special_tokens": [
|
53 |
+
"<MULT>"
|
54 |
+
],
|
55 |
+
"clean_up_tokenization_spaces": true,
|
56 |
+
"cls_token": "[CLS]",
|
57 |
+
"do_lower_case": true,
|
58 |
+
"mask_token": "[MASK]",
|
59 |
+
"model_max_length": 512,
|
60 |
+
"pad_token": "[PAD]",
|
61 |
+
"sep_token": "[SEP]",
|
62 |
+
"strip_accents": null,
|
63 |
+
"tokenize_chinese_chars": true,
|
64 |
+
"tokenizer_class": "DistilBertTokenizer",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
Neptune/Neptune/unique_labels.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
["Physics", "Societies", "admsci", "agriculture", "ai", "applsci", "asi", "biology", "economies", "energies", "environments", "make", "mathematics", "robotics", "sports", "technologies", "vehicles"]
|
Neptune/Neptune/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
__pycache__/Model.cpython-310.pyc
ADDED
Binary file (6.1 kB). View file
|
|
__pycache__/app.cpython-310.pyc
CHANGED
Binary files a/__pycache__/app.cpython-310.pyc and b/__pycache__/app.cpython-310.pyc differ
|
|
__pycache__/helper_functions.cpython-310.pyc
CHANGED
Binary files a/__pycache__/helper_functions.cpython-310.pyc and b/__pycache__/helper_functions.cpython-310.pyc differ
|
|
app.py
CHANGED
@@ -1,13 +1,32 @@
|
|
1 |
-
from flask import Flask, render_template,request, redirect,url_for, jsonify
|
2 |
-
from helper_functions import predict_class
|
3 |
import fitz # PyMuPDF
|
4 |
import os, shutil
|
5 |
import torch
|
6 |
-
import
|
7 |
-
|
|
|
|
|
8 |
app = Flask(__name__)
|
9 |
app.config['UPLOAD_FOLDER'] = 'static/uploads'
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
@app.route("/")
|
12 |
def home():
|
13 |
predict_class = ""
|
@@ -24,6 +43,7 @@ def pdf():
|
|
24 |
|
25 |
@app.route('/pdf/upload' , methods = ['POST'])
|
26 |
def treatment():
|
|
|
27 |
if request.method == 'POST' :
|
28 |
# Récupérer le fichier PDF de la requête
|
29 |
file = request.files['file']
|
@@ -53,7 +73,7 @@ def treatment():
|
|
53 |
# Fermer le fichier PDF
|
54 |
pdf_document.close()
|
55 |
# Prepare data for the chart
|
56 |
-
predicted_class , class_probabilities = predict_class([extracted_text])
|
57 |
chart_data = {
|
58 |
'datasets': [{
|
59 |
'data': list(class_probabilities.values()),
|
@@ -77,17 +97,20 @@ def treatment():
|
|
77 |
return render_template('pdf.html',extracted_text = extracted_text, class_probabilities=class_probabilities, predicted_class=predicted_class, chart_data = chart_data)
|
78 |
return render_template('pdf.html')
|
79 |
|
|
|
|
|
80 |
@app.route('/sentence' , methods = ['GET' , 'POST'])
|
81 |
def sentence():
|
|
|
82 |
if request.method == 'POST':
|
83 |
# Get the form data
|
84 |
text = [request.form['text']]
|
85 |
-
predicted_class , class_probabilities = predict_class(text)
|
86 |
# Prepare data for the chart
|
87 |
chart_data = {
|
88 |
'datasets': [{
|
89 |
'data': list(class_probabilities.values()),
|
90 |
-
'backgroundColor': [color[2] for color in class_probabilities.keys()],
|
91 |
'borderColor': [color[2] for color in class_probabilities.keys()]
|
92 |
}],
|
93 |
'labels': [label[0] for label in class_probabilities.keys()]
|
@@ -108,6 +131,121 @@ def sentence():
|
|
108 |
# Render the initial form page
|
109 |
return render_template('sentence.html')
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
if __name__ == '__main__':
|
113 |
app.run(debug=True)
|
|
|
1 |
+
from flask import Flask, render_template,request, redirect,url_for, jsonify , session
|
2 |
+
from helper_functions import predict_class , prepare_text , inference , predict , align_predictions_with_sentences , load_models
|
3 |
import fitz # PyMuPDF
|
4 |
import os, shutil
|
5 |
import torch
|
6 |
+
import tempfile
|
7 |
+
from pydub import AudioSegment
|
8 |
+
import logging
|
9 |
+
|
10 |
app = Flask(__name__)
|
11 |
app.config['UPLOAD_FOLDER'] = 'static/uploads'
|
12 |
|
13 |
+
# Global variables for models
|
14 |
+
global_model = None
|
15 |
+
global_neptune = None
|
16 |
+
global_tokenizer = None
|
17 |
+
global_pipe = None
|
18 |
+
|
19 |
+
def init_app():
|
20 |
+
global global_model, global_neptune, global_pipe
|
21 |
+
print("Loading models...")
|
22 |
+
global_model, global_neptune, global_pipe = load_models()
|
23 |
+
print("Models loaded successfully!")
|
24 |
+
|
25 |
+
# Call init_app() before the first request
|
26 |
+
@app.before_first_request
|
27 |
+
def before_first_request():
|
28 |
+
init_app()
|
29 |
+
|
30 |
@app.route("/")
|
31 |
def home():
|
32 |
predict_class = ""
|
|
|
43 |
|
44 |
@app.route('/pdf/upload' , methods = ['POST'])
|
45 |
def treatment():
|
46 |
+
global global_model, global_tokenizer
|
47 |
if request.method == 'POST' :
|
48 |
# Récupérer le fichier PDF de la requête
|
49 |
file = request.files['file']
|
|
|
73 |
# Fermer le fichier PDF
|
74 |
pdf_document.close()
|
75 |
# Prepare data for the chart
|
76 |
+
predicted_class , class_probabilities = predict_class([extracted_text] , global_model)
|
77 |
chart_data = {
|
78 |
'datasets': [{
|
79 |
'data': list(class_probabilities.values()),
|
|
|
97 |
return render_template('pdf.html',extracted_text = extracted_text, class_probabilities=class_probabilities, predicted_class=predicted_class, chart_data = chart_data)
|
98 |
return render_template('pdf.html')
|
99 |
|
100 |
+
## Sentence
|
101 |
+
|
102 |
@app.route('/sentence' , methods = ['GET' , 'POST'])
|
103 |
def sentence():
|
104 |
+
global global_model, global_tokenizer
|
105 |
if request.method == 'POST':
|
106 |
# Get the form data
|
107 |
text = [request.form['text']]
|
108 |
+
predicted_class , class_probabilities = predict_class(text , global_model)
|
109 |
# Prepare data for the chart
|
110 |
chart_data = {
|
111 |
'datasets': [{
|
112 |
'data': list(class_probabilities.values()),
|
113 |
+
'backgroundColor': [color[2 ] for color in class_probabilities.keys()],
|
114 |
'borderColor': [color[2] for color in class_probabilities.keys()]
|
115 |
}],
|
116 |
'labels': [label[0] for label in class_probabilities.keys()]
|
|
|
131 |
# Render the initial form page
|
132 |
return render_template('sentence.html')
|
133 |
|
134 |
+
## Voice
|
135 |
+
@app.route("/voice_backup")
|
136 |
+
def slu_backup():
|
137 |
+
input_file = "static/uploads/2022.jep-architectures-neuronales.pdf"
|
138 |
+
# Ouvrir le fichier PDF
|
139 |
+
pdf_document = fitz.open(input_file)
|
140 |
+
# Initialiser une variable pour stocker le texte extrait
|
141 |
+
extracted_text = ""
|
142 |
+
# Boucler à travers chaque page pour extraire le texte
|
143 |
+
for page_num in range(len(pdf_document)):
|
144 |
+
# Récupérer l'objet de la page
|
145 |
+
page = pdf_document.load_page(page_num)
|
146 |
+
|
147 |
+
# Extraire le texte de la page
|
148 |
+
page_text = page.get_text()
|
149 |
+
|
150 |
+
# Ajouter le texte de la page à la variable d'extraction
|
151 |
+
extracted_text += f"\nPage {page_num + 1}:\n{page_text}"
|
152 |
+
|
153 |
+
# Fermer le fichier PDF
|
154 |
+
pdf_document.close()
|
155 |
+
# Prepare data for the chart
|
156 |
+
inference_batch, sentences = inference(extracted_text)
|
157 |
+
predictions = predict(inference_batch)
|
158 |
+
sentences_prediction = align_predictions_with_sentences(sentences, predictions)
|
159 |
+
predicted_class , class_probabilities = predict_class([extracted_text] , global_model)
|
160 |
+
|
161 |
+
chart_data = {
|
162 |
+
'datasets': [{
|
163 |
+
'data': list(class_probabilities.values()),
|
164 |
+
'backgroundColor': [color[2 ] for color in class_probabilities.keys()],
|
165 |
+
'borderColor': [color[2] for color in class_probabilities.keys()]
|
166 |
+
}],
|
167 |
+
'labels': [label[0] for label in class_probabilities.keys()]
|
168 |
+
}
|
169 |
+
print(class_probabilities)
|
170 |
+
print(chart_data)
|
171 |
+
print(sentences_prediction)
|
172 |
+
return render_template('voice_backup.html',extracted_text = extracted_text, class_probabilities=class_probabilities, predicted_class=predicted_class, chart_data = chart_data, sentences_prediction = sentences_prediction)
|
173 |
+
|
174 |
+
logging.basicConfig(level=logging.DEBUG)
|
175 |
+
|
176 |
+
@app.route("/voice", methods=['GET', 'POST'])
|
177 |
+
def slu():
|
178 |
+
global global_neptune, global_pipe, global_model
|
179 |
+
|
180 |
+
if request.method == 'POST':
|
181 |
+
logging.debug("Received POST request")
|
182 |
+
audio_file = request.files.get('audio')
|
183 |
+
|
184 |
+
if audio_file:
|
185 |
+
logging.debug(f"Received audio file: {audio_file.filename}")
|
186 |
+
|
187 |
+
# Save audio data to a temporary file
|
188 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio:
|
189 |
+
audio_file.save(temp_audio)
|
190 |
+
temp_audio_path = temp_audio.name
|
191 |
+
|
192 |
+
logging.debug(f"Saved audio to temporary file: {temp_audio_path}")
|
193 |
+
|
194 |
+
try:
|
195 |
+
# Transcribe audio using Whisper
|
196 |
+
result = global_pipe(temp_audio_path)
|
197 |
+
extracted_text = result["text"]
|
198 |
+
logging.debug(f"Transcribed text: {extracted_text}")
|
199 |
+
|
200 |
+
# Process the transcribed text
|
201 |
+
inference_batch, sentences = inference(extracted_text)
|
202 |
+
predictions = predict(inference_batch, global_neptune)
|
203 |
+
sentences_prediction = align_predictions_with_sentences(sentences, predictions)
|
204 |
+
predicted_class, class_probabilities = predict_class([extracted_text], global_model)
|
205 |
+
|
206 |
+
chart_data = {
|
207 |
+
'datasets': [{
|
208 |
+
'data': list(class_probabilities.values()),
|
209 |
+
'backgroundColor': [color[2] for color in class_probabilities.keys()],
|
210 |
+
'borderColor': [color[2] for color in class_probabilities.keys()]
|
211 |
+
}],
|
212 |
+
'labels': [label[0] for label in class_probabilities.keys()]
|
213 |
+
}
|
214 |
+
|
215 |
+
response_data = {
|
216 |
+
'extracted_text': extracted_text,
|
217 |
+
'class_probabilities' : class_probabilities,
|
218 |
+
'predicted_class': predicted_class,
|
219 |
+
'chart_data': chart_data,
|
220 |
+
'sentences_prediction': sentences_prediction
|
221 |
+
}
|
222 |
+
logging.debug(f"Prepared response data: {response_data}")
|
223 |
+
|
224 |
+
return render_template('voice.html',
|
225 |
+
class_probabilities= class_probabilities,
|
226 |
+
predicted_class= predicted_class,
|
227 |
+
chart_data= chart_data,
|
228 |
+
sentences_prediction=sentences_prediction)
|
229 |
+
|
230 |
+
except Exception as e:
|
231 |
+
logging.error(f"Error processing audio: {str(e)}")
|
232 |
+
return jsonify({'error': str(e)}), 500
|
233 |
+
|
234 |
+
finally:
|
235 |
+
# Remove temporary file
|
236 |
+
os.unlink(temp_audio_path)
|
237 |
+
|
238 |
+
else:
|
239 |
+
logging.error("No audio file received")
|
240 |
+
return jsonify({'error': 'No audio file received'}), 400
|
241 |
+
|
242 |
+
# For GET request
|
243 |
+
logging.debug("Received GET request")
|
244 |
+
return render_template('voice.html',
|
245 |
+
class_probabilities={},
|
246 |
+
predicted_class=[""],
|
247 |
+
chart_data={},
|
248 |
+
sentences_prediction={})
|
249 |
|
250 |
if __name__ == '__main__':
|
251 |
app.run(debug=True)
|
helper_functions.py
CHANGED
@@ -4,17 +4,38 @@ from transformers import AutoTokenizer , DistilBertForSequenceClassification
|
|
4 |
from transformers import BatchEncoding, PreTrainedTokenizerBase
|
5 |
from typing import Optional
|
6 |
from torch import Tensor
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
8 |
# Load the model
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
class_labels = {
|
20 |
16: ('vehicles','info' , '#4f9ef8'),
|
@@ -35,7 +56,7 @@ class_labels = {
|
|
35 |
2: ('administration','pink', '#d63384'),
|
36 |
7: ('biology' ,'cambridge' , '#88aa99')}
|
37 |
|
38 |
-
def predict_class(text):
|
39 |
# Tokenisation du texte
|
40 |
inputs = transform_list_of_texts(text, tokenizer, 510, 510, 1, 2550)
|
41 |
# Extraire le tenseur de la liste
|
@@ -91,7 +112,7 @@ def transform_single_text(
|
|
91 |
tokens = tokenize_whole_text(text, tokenizer)
|
92 |
input_id_chunks, mask_chunks = split_tokens_into_smaller_chunks(tokens, chunk_size, stride, minimal_chunk_length)
|
93 |
add_special_tokens_at_beginning_and_end(input_id_chunks, mask_chunks)
|
94 |
-
|
95 |
input_ids, attention_mask = stack_tokens_from_all_chunks(input_id_chunks, mask_chunks)
|
96 |
return input_ids, attention_mask
|
97 |
|
@@ -137,16 +158,19 @@ def add_special_tokens_at_beginning_and_end(input_id_chunks: list[Tensor], mask_
|
|
137 |
mask_chunks[i] = torch.cat([Tensor([1]), mask_chunks[i], Tensor([1])])
|
138 |
|
139 |
|
140 |
-
|
141 |
-
|
|
|
|
|
142 |
for i in range(len(input_id_chunks)):
|
143 |
# get required padding length
|
144 |
-
pad_len =
|
145 |
# check if tensor length satisfies required chunk size
|
146 |
if pad_len > 0:
|
147 |
# if padding length is more than 0, we must add padding
|
148 |
-
input_id_chunks[i] = torch.cat([input_id_chunks[i],
|
149 |
-
mask_chunks[i] = torch.cat([mask_chunks[i],
|
|
|
150 |
|
151 |
|
152 |
def stack_tokens_from_all_chunks(input_id_chunks: list[Tensor], mask_chunks: list[Tensor]) -> tuple[Tensor, Tensor]:
|
@@ -165,3 +189,144 @@ def split_overlapping(tensor: Tensor, chunk_size: int, stride: int, minimal_chun
|
|
165 |
result = [x for x in result if len(x) >= minimal_chunk_length]
|
166 |
return result
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from transformers import BatchEncoding, PreTrainedTokenizerBase
|
5 |
from typing import Optional
|
6 |
from torch import Tensor
|
7 |
+
import numpy as np
|
8 |
+
from random import shuffle
|
9 |
+
from Model import BERT
|
10 |
+
from Model import tokenizer , mult_token_id , cls_token_id , pad_token_id , max_pred , maxlen , sep_token_id
|
11 |
+
from transformers import pipeline
|
12 |
|
13 |
+
device = "cpu"
|
14 |
# Load the model
|
15 |
+
def load_models():
|
16 |
+
print("Loading DistilBERT model...")
|
17 |
+
model = DistilBertForSequenceClassification.from_pretrained("DistillMDPI1/DistillMDPI1/saved_model")
|
18 |
+
|
19 |
+
print("Loading BERT model...")
|
20 |
+
neptune = BERT()
|
21 |
+
device = "cpu"
|
22 |
+
model_save_path = "Neptune/Neptune/model.pt"
|
23 |
+
neptune.load_state_dict(torch.load(model_save_path, map_location=torch.device('cpu')))
|
24 |
+
neptune.to(device)
|
25 |
+
|
26 |
+
print("Loading speech recognition pipeline...")
|
27 |
+
pipe = pipeline(
|
28 |
+
"automatic-speech-recognition",
|
29 |
+
model="openai/whisper-tiny.en",
|
30 |
+
chunk_length_s=30,
|
31 |
+
device=device,
|
32 |
+
)
|
33 |
+
print(pipe)
|
34 |
+
# Charger le label encoder
|
35 |
+
with open("DistillMDPI1/DistillMDPI1/label_encoder.pkl", "rb") as f:
|
36 |
+
label_encoder = pickle.load(f)
|
37 |
+
|
38 |
+
return model, neptune, pipe
|
39 |
|
40 |
class_labels = {
|
41 |
16: ('vehicles','info' , '#4f9ef8'),
|
|
|
56 |
2: ('administration','pink', '#d63384'),
|
57 |
7: ('biology' ,'cambridge' , '#88aa99')}
|
58 |
|
59 |
+
def predict_class(text , model):
|
60 |
# Tokenisation du texte
|
61 |
inputs = transform_list_of_texts(text, tokenizer, 510, 510, 1, 2550)
|
62 |
# Extraire le tenseur de la liste
|
|
|
112 |
tokens = tokenize_whole_text(text, tokenizer)
|
113 |
input_id_chunks, mask_chunks = split_tokens_into_smaller_chunks(tokens, chunk_size, stride, minimal_chunk_length)
|
114 |
add_special_tokens_at_beginning_and_end(input_id_chunks, mask_chunks)
|
115 |
+
input_ids, attention_mask = stack_tokens_from_all_chunks(input_id_chunks, mask_chunks)
|
116 |
input_ids, attention_mask = stack_tokens_from_all_chunks(input_id_chunks, mask_chunks)
|
117 |
return input_ids, attention_mask
|
118 |
|
|
|
158 |
mask_chunks[i] = torch.cat([Tensor([1]), mask_chunks[i], Tensor([1])])
|
159 |
|
160 |
|
161 |
+
|
162 |
+
def add_padding_tokens(input_id_chunks: list[Tensor], mask_chunks: list[Tensor], chunk_size: int) -> None:
|
163 |
+
"""Adds padding tokens at the end to make sure that all chunks have exactly chunk_size tokens."""
|
164 |
+
pad_token_id = 0 # Assuming this is defined somewhere in your code
|
165 |
for i in range(len(input_id_chunks)):
|
166 |
# get required padding length
|
167 |
+
pad_len = chunk_size +2 - input_id_chunks[i].shape[0]
|
168 |
# check if tensor length satisfies required chunk size
|
169 |
if pad_len > 0:
|
170 |
# if padding length is more than 0, we must add padding
|
171 |
+
input_id_chunks[i] = torch.cat([input_id_chunks[i], torch.tensor([pad_token_id] * pad_len)])
|
172 |
+
mask_chunks[i] = torch.cat([mask_chunks[i], torch.tensor([0] * pad_len)])
|
173 |
+
|
174 |
|
175 |
|
176 |
def stack_tokens_from_all_chunks(input_id_chunks: list[Tensor], mask_chunks: list[Tensor]) -> tuple[Tensor, Tensor]:
|
|
|
189 |
result = [x for x in result if len(x) >= minimal_chunk_length]
|
190 |
return result
|
191 |
|
192 |
+
## Voice part
|
193 |
+
|
194 |
+
def transform_for_inference_text(text: str,
|
195 |
+
tokenizer: PreTrainedTokenizerBase,
|
196 |
+
chunk_size: int,
|
197 |
+
stride: int,
|
198 |
+
minimal_chunk_length: int,
|
199 |
+
maximal_text_length: Optional[int],) -> BatchEncoding:
|
200 |
+
if maximal_text_length:
|
201 |
+
tokens = tokenize_text_with_truncation(text, tokenizer, maximal_text_length)
|
202 |
+
else:
|
203 |
+
tokens = tokenize_whole_text(text, tokenizer)
|
204 |
+
input_id_chunks, mask_chunks = split_tokens_into_smaller_chunks(tokens, chunk_size, stride, minimal_chunk_length)
|
205 |
+
add_special_tokens_at_beginning_and_end_inference(input_id_chunks, mask_chunks)
|
206 |
+
add_padding_tokens_inference(input_id_chunks, mask_chunks, chunk_size)
|
207 |
+
input_ids, attention_mask = stack_tokens_from_all_chunks(input_id_chunks, mask_chunks)
|
208 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
209 |
+
|
210 |
+
def add_special_tokens_at_beginning_and_end_inference(input_id_chunks: list[Tensor], mask_chunks: list[Tensor]) -> None:
|
211 |
+
"""
|
212 |
+
Adds special MULT token, CLS token at the beginning.
|
213 |
+
Adds SEP token at the end of each chunk.
|
214 |
+
Adds corresponding attention masks equal to 1 (attention mask is boolean).
|
215 |
+
"""
|
216 |
+
for i in range(len(input_id_chunks)):
|
217 |
+
# adding MULT, CLS, and SEP tokens
|
218 |
+
input_id_chunks[i] = torch.cat([input_id_chunks[i]])
|
219 |
+
# adding attention masks corresponding to special tokens
|
220 |
+
mask_chunks[i] = torch.cat([mask_chunks[i]])
|
221 |
+
|
222 |
+
def add_padding_tokens_inference(input_id_chunks: list[Tensor], mask_chunks: list[Tensor], chunk_size: int) -> None:
|
223 |
+
"""Adds padding tokens at the end to make sure that all chunks have exactly chunk_size tokens."""
|
224 |
+
pad_token_id = 0 # Assuming this is defined somewhere in your code
|
225 |
+
for i in range(len(input_id_chunks)):
|
226 |
+
# get required padding length
|
227 |
+
pad_len = chunk_size - input_id_chunks[i].shape[0]
|
228 |
+
# check if tensor length satisfies required chunk size
|
229 |
+
if pad_len > 0:
|
230 |
+
# if padding length is more than 0, we must add padding
|
231 |
+
input_id_chunks[i] = torch.cat([input_id_chunks[i], torch.tensor([pad_token_id] * pad_len)])
|
232 |
+
mask_chunks[i] = torch.cat([mask_chunks[i], torch.tensor([0] * pad_len)])
|
233 |
+
|
234 |
+
def prepare_text(tokens_splitted: BatchEncoding):
|
235 |
+
batch = []
|
236 |
+
sentences = []
|
237 |
+
input_ids_list = tokens_splitted['input_ids']
|
238 |
+
|
239 |
+
for i in range(0, len(input_ids_list), 2): # Adjust loop to stop at second last index
|
240 |
+
k = i + 1
|
241 |
+
if k == len(input_ids_list):
|
242 |
+
input_ids_a = input_ids_list[i]
|
243 |
+
input_ids_a = [token for token in input_ids_a.view(-1).tolist() if token != pad_token_id]
|
244 |
+
input_ids_b = []
|
245 |
+
input_ids = [cls_token_id] + [mult_token_id] + input_ids_a + [sep_token_id] + [mult_token_id] + input_ids_b + [sep_token_id]
|
246 |
+
text_input_a = tokenizer.decode(input_ids_a)
|
247 |
+
sentences.append(text_input_a)
|
248 |
+
segment_ids = [0] * (1 + 1 + len(input_ids_a) + 1) + [1] * (1 + len(input_ids_b) + 1)
|
249 |
+
|
250 |
+
# MASK LM
|
251 |
+
n_pred = min(max_pred, max(1, int(round(len(input_ids) * 0.15))))
|
252 |
+
cand_masked_pos = [idx for idx, token in enumerate(input_ids) if token not in [cls_token_id, sep_token_id, mult_token_id]]
|
253 |
+
shuffle(cand_masked_pos)
|
254 |
+
masked_tokens, masked_pos = [], []
|
255 |
+
for pos in cand_masked_pos[:n_pred]:
|
256 |
+
masked_pos.append(pos)
|
257 |
+
masked_tokens.append(input_ids[pos])
|
258 |
+
input_ids[pos] = tokenizer.mask_token_id
|
259 |
+
|
260 |
+
# Zero Padding
|
261 |
+
n_pad = maxlen - len(input_ids)
|
262 |
+
input_ids.extend([pad_token_id] * n_pad)
|
263 |
+
segment_ids.extend([0] * n_pad)
|
264 |
+
|
265 |
+
# Zero Padding for masked tokens
|
266 |
+
if max_pred > n_pred:
|
267 |
+
n_pad = max_pred - n_pred
|
268 |
+
masked_tokens.extend([0] * n_pad)
|
269 |
+
masked_pos.extend([0] * n_pad)
|
270 |
+
else:
|
271 |
+
input_ids_a = input_ids_list[i] # Correct the indexing here
|
272 |
+
input_ids_b = input_ids_list[k] # Correct the indexing here
|
273 |
+
input_ids_a = [token for token in input_ids_a.view(-1).tolist() if token != pad_token_id]
|
274 |
+
input_ids_b = [token for token in input_ids_b.view(-1).tolist() if token != pad_token_id]
|
275 |
+
input_ids = [cls_token_id] + [mult_token_id] + input_ids_a + [sep_token_id] + [mult_token_id] + input_ids_b + [sep_token_id]
|
276 |
+
segment_ids = [0] * (1 + 1 + len(input_ids_a) + 1) + [1] * (1 + len(input_ids_b) + 1)
|
277 |
+
text_input_a = tokenizer.decode(input_ids_a)
|
278 |
+
text_input_b = tokenizer.decode(input_ids_b)
|
279 |
+
sentences.append(text_input_a)
|
280 |
+
sentences.append(text_input_b)
|
281 |
+
|
282 |
+
# MASK LM
|
283 |
+
n_pred = min(max_pred, max(1, int(round(len(input_ids) * 0.15))))
|
284 |
+
cand_masked_pos = [idx for idx, token in enumerate(input_ids) if token not in [cls_token_id, sep_token_id, mult_token_id]]
|
285 |
+
shuffle(cand_masked_pos)
|
286 |
+
masked_tokens, masked_pos = [], []
|
287 |
+
for pos in cand_masked_pos[:n_pred]:
|
288 |
+
masked_pos.append(pos)
|
289 |
+
masked_tokens.append(input_ids[pos])
|
290 |
+
input_ids[pos] = tokenizer.mask_token_id
|
291 |
+
|
292 |
+
# Zero Padding
|
293 |
+
n_pad = maxlen - len(input_ids)
|
294 |
+
input_ids.extend([pad_token_id] * n_pad)
|
295 |
+
segment_ids.extend([0] * n_pad)
|
296 |
+
|
297 |
+
# Zero Padding for masked tokens
|
298 |
+
if max_pred > n_pred:
|
299 |
+
n_pad = max_pred - n_pred
|
300 |
+
masked_tokens.extend([0] * n_pad)
|
301 |
+
masked_pos.extend([0] * n_pad)
|
302 |
+
|
303 |
+
batch.append([input_ids, segment_ids, masked_pos])
|
304 |
+
return batch, sentences
|
305 |
+
|
306 |
+
def inference(text: str):
|
307 |
+
encoded_text = transform_for_inference_text(text, tokenizer, 125, 125, 1, 2550)
|
308 |
+
batch, sentences = prepare_text(encoded_text)
|
309 |
+
return batch, sentences
|
310 |
+
|
311 |
+
def predict(inference_batch,neptune , device = device):
|
312 |
+
all_preds_mult1 = []
|
313 |
+
neptune.eval()
|
314 |
+
with torch.no_grad():
|
315 |
+
for batch in inference_batch:
|
316 |
+
input_ids = torch.tensor(batch[0], device=device, dtype=torch.long).unsqueeze(0)
|
317 |
+
segment_ids = torch.tensor(batch[1], device=device, dtype=torch.long).unsqueeze(0)
|
318 |
+
masked_pos = torch.tensor(batch[2], device=device, dtype=torch.long).unsqueeze(0)
|
319 |
+
_, _, logits_mclsf1, logits_mclsf2 = neptune(input_ids, segment_ids, masked_pos)
|
320 |
+
preds_mult1 = torch.argmax(logits_mclsf1, dim=1).cpu().detach().numpy()
|
321 |
+
preds_mult2 = torch.argmax(logits_mclsf2, dim=1).cpu().detach().numpy()
|
322 |
+
|
323 |
+
all_preds_mult1.extend(preds_mult1)
|
324 |
+
all_preds_mult1.extend(preds_mult2)
|
325 |
+
|
326 |
+
return all_preds_mult1
|
327 |
+
|
328 |
+
def align_predictions_with_sentences(sentences, preds):
|
329 |
+
dc = {} # Initialize an empty dictionary
|
330 |
+
for sentence, pred in zip(sentences, preds): # Iterate through sentences and predictions
|
331 |
+
dc[sentence] = class_labels.get(pred, "Unknown") # Look up the label for each prediction
|
332 |
+
return dc
|
requirements.txt
CHANGED
@@ -3,4 +3,6 @@ gunicorn
|
|
3 |
PyPDF2
|
4 |
PyMuPDF
|
5 |
torch
|
6 |
-
transformers
|
|
|
|
|
|
3 |
PyPDF2
|
4 |
PyMuPDF
|
5 |
torch
|
6 |
+
transformers
|
7 |
+
pydub
|
8 |
+
whisper
|
static/css/style2.css
CHANGED
@@ -3518,6 +3518,11 @@ textarea.form-control-lg {
|
|
3518 |
background-color: #d6293e;
|
3519 |
border-color: #d6293e;
|
3520 |
}
|
|
|
|
|
|
|
|
|
|
|
3521 |
.btn-danger:hover {
|
3522 |
color: #fff;
|
3523 |
background-color: #b62335;
|
@@ -16576,6 +16581,7 @@ html[data-theme=dark] .light-mode-item {
|
|
16576 |
z-index: 0;
|
16577 |
border: 2px dashed #eef0f2;
|
16578 |
}
|
|
|
16579 |
.dropzone .dz-preview.dz-image-preview {
|
16580 |
background: transparent;
|
16581 |
}
|
@@ -17334,5 +17340,48 @@ html[data-theme=dark] .light-mode-item {
|
|
17334 |
.mw-80 {
|
17335 |
max-width: 80%;
|
17336 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17337 |
/*User CSS*/
|
17338 |
/*# sourceMappingURL=style.css.map */
|
|
|
3518 |
background-color: #d6293e;
|
3519 |
border-color: #d6293e;
|
3520 |
}
|
3521 |
+
.btn-green {
|
3522 |
+
color: #fff;
|
3523 |
+
background-color: #72AB5A;
|
3524 |
+
border-color: #72AB5A;
|
3525 |
+
}
|
3526 |
.btn-danger:hover {
|
3527 |
color: #fff;
|
3528 |
background-color: #b62335;
|
|
|
16581 |
z-index: 0;
|
16582 |
border: 2px dashed #eef0f2;
|
16583 |
}
|
16584 |
+
|
16585 |
.dropzone .dz-preview.dz-image-preview {
|
16586 |
background: transparent;
|
16587 |
}
|
|
|
17340 |
.mw-80 {
|
17341 |
max-width: 80%;
|
17342 |
}
|
17343 |
+
.card-body {
|
17344 |
+
display: flex;
|
17345 |
+
flex-direction: column;
|
17346 |
+
}
|
17347 |
+
|
17348 |
+
.card-body > div:first-child {
|
17349 |
+
flex-grow: 1;
|
17350 |
+
}
|
17351 |
+
|
17352 |
+
.card-body .mt-auto {
|
17353 |
+
margin-top: auto;
|
17354 |
+
}
|
17355 |
+
|
17356 |
+
.file-upload-wrapper {
|
17357 |
+
position: relative;
|
17358 |
+
width: 100%;
|
17359 |
+
height: 100px;
|
17360 |
+
border: 2px dashed #72AB5A;
|
17361 |
+
border-radius: 5px;
|
17362 |
+
display: flex;
|
17363 |
+
justify-content: center;
|
17364 |
+
align-items: center;
|
17365 |
+
overflow: hidden;
|
17366 |
+
cursor: pointer;
|
17367 |
+
background-color: #303131;
|
17368 |
+
}
|
17369 |
+
.file-upload-wrapper input[type=file] {
|
17370 |
+
position: absolute;
|
17371 |
+
top: 0;
|
17372 |
+
left: 0;
|
17373 |
+
width: 100%;
|
17374 |
+
height: 100%;
|
17375 |
+
opacity: 0;
|
17376 |
+
cursor: pointer;
|
17377 |
+
}
|
17378 |
+
.file-upload-text {
|
17379 |
+
color: #fff;
|
17380 |
+
text-align: center;
|
17381 |
+
}
|
17382 |
+
.file-name {
|
17383 |
+
margin-top: 10px;
|
17384 |
+
color: #72AB5A;
|
17385 |
+
}
|
17386 |
/*User CSS*/
|
17387 |
/*# sourceMappingURL=style.css.map */
|
static/js/dashboard_voice.js
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Récupérez les données, les couleurs de fond, les couleurs de bordure et les étiquettes des paramètres de l'URL
|
2 |
+
var urlParams = new URLSearchParams(window.location.search);
|
3 |
+
var data = JSON.parse(decodeURIComponent(urlParams.get('data')));
|
4 |
+
var backgroundColor = JSON.parse(decodeURIComponent(urlParams.get('backgroundColor')));
|
5 |
+
var borderColor = JSON.parse(decodeURIComponent(urlParams.get('borderColor')));
|
6 |
+
var labels = JSON.parse(decodeURIComponent(urlParams.get('labels')));
|
7 |
+
|
8 |
+
// Function to initialize or update the chart with dynamic data
|
9 |
+
function initializeOrUpdateChart(data, backgroundColor, borderColor, labels) {
|
10 |
+
// Check if a chart instance exists
|
11 |
+
if (window.myChart) {
|
12 |
+
// Update the existing chart
|
13 |
+
window.myChart.data.datasets[0].data = data;
|
14 |
+
window.myChart.data.datasets[0].backgroundColor = backgroundColor;
|
15 |
+
window.myChart.data.datasets[0].borderColor = borderColor;
|
16 |
+
window.myChart.data.labels = labels;
|
17 |
+
window.myChart.update();
|
18 |
+
} else {
|
19 |
+
// Create a new chart instance
|
20 |
+
var ctx = document.getElementById('bestSellers').getContext('2d');
|
21 |
+
window.myChart = new Chart(ctx, {
|
22 |
+
type: 'doughnut',
|
23 |
+
data: {
|
24 |
+
datasets: [{
|
25 |
+
data: data,
|
26 |
+
backgroundColor: backgroundColor,
|
27 |
+
borderColor: borderColor
|
28 |
+
}],
|
29 |
+
labels: labels
|
30 |
+
},
|
31 |
+
options: {
|
32 |
+
responsive: true,
|
33 |
+
cutoutPercentage: 80,
|
34 |
+
legend: {
|
35 |
+
display: false
|
36 |
+
},
|
37 |
+
animation: {
|
38 |
+
animateScale: true,
|
39 |
+
animateRotate: true
|
40 |
+
},
|
41 |
+
plugins: {
|
42 |
+
datalabels: {
|
43 |
+
display: false,
|
44 |
+
align: 'center',
|
45 |
+
anchor: 'center'
|
46 |
+
}
|
47 |
+
}
|
48 |
+
}
|
49 |
+
});
|
50 |
+
}
|
51 |
+
}
|
52 |
+
|
53 |
+
// Initialize or update the chart when the script is loaded
|
54 |
+
initializeOrUpdateChart(data, backgroundColor, borderColor, labels);
|
static/js/voice.js
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
const reset = document.getElementById("reset");
|
2 |
+
const currentClassProbabilitiesList = document.getElementById("class-probabilities");
|
3 |
+
const currentPredictedClass = document.getElementById('predicted-class');
|
4 |
+
const staticDiv = document.getElementById("static");
|
5 |
+
const dynamicDiv = document.getElementById("dynamic");
|
6 |
+
var chartData;
|
7 |
+
|
8 |
+
let mediaRecorder;
|
9 |
+
let audioChunks = [];
|
10 |
+
|
11 |
+
document.addEventListener('DOMContentLoaded', function() {
|
12 |
+
loadResults();
|
13 |
+
attachEventListeners();
|
14 |
+
});
|
15 |
+
|
16 |
+
function attachEventListeners() {
|
17 |
+
document.getElementById('startRecord').addEventListener('click', startRecording);
|
18 |
+
document.getElementById('stopRecord').addEventListener('click', stopRecording);
|
19 |
+
document.getElementById('uploadAudio').addEventListener('click', handleAudioUpload);
|
20 |
+
}
|
21 |
+
|
22 |
+
function initializeChart(data, backgroundColor, borderColor) {
|
23 |
+
const canvas = document.getElementById('bestSellers');
|
24 |
+
|
25 |
+
// Destroy existing chart if it exists
|
26 |
+
const existingChart = Chart.getChart(canvas);
|
27 |
+
if (existingChart) {
|
28 |
+
existingChart.destroy();
|
29 |
+
}
|
30 |
+
|
31 |
+
// Clear the canvas
|
32 |
+
const context = canvas.getContext('2d');
|
33 |
+
context.clearRect(0, 0, canvas.width, canvas.height);
|
34 |
+
|
35 |
+
data = data.map(function (element) {
|
36 |
+
return parseFloat(element).toFixed(2);
|
37 |
+
});
|
38 |
+
|
39 |
+
new Chart(canvas, {
|
40 |
+
type: 'doughnut',
|
41 |
+
data: {
|
42 |
+
datasets: [{
|
43 |
+
data: data,
|
44 |
+
backgroundColor: backgroundColor,
|
45 |
+
borderColor: borderColor,
|
46 |
+
borderWidth: 1
|
47 |
+
|
48 |
+
}]
|
49 |
+
},
|
50 |
+
options: {
|
51 |
+
responsive: true,
|
52 |
+
cutout: '80%',
|
53 |
+
plugins: {
|
54 |
+
legend: {
|
55 |
+
display: true,
|
56 |
+
},
|
57 |
+
tooltip: {
|
58 |
+
enabled: false
|
59 |
+
}
|
60 |
+
},
|
61 |
+
layout: {
|
62 |
+
padding: 0
|
63 |
+
},
|
64 |
+
elements: {
|
65 |
+
arc: {
|
66 |
+
borderWidth: 0
|
67 |
+
}
|
68 |
+
},
|
69 |
+
plugins: {
|
70 |
+
datalabels: {
|
71 |
+
display: false,
|
72 |
+
align: 'center',
|
73 |
+
anchor: 'center'
|
74 |
+
}
|
75 |
+
}
|
76 |
+
}
|
77 |
+
});
|
78 |
+
}
|
79 |
+
|
80 |
+
function loadResults() {
|
81 |
+
fetch('/voice')
|
82 |
+
.then(response => response.text())
|
83 |
+
.then(html => {
|
84 |
+
const responseDOM = new DOMParser().parseFromString(html, "text/html");
|
85 |
+
const classProbabilitiesList = responseDOM.getElementById("class-probabilities");
|
86 |
+
currentClassProbabilitiesList.innerHTML = classProbabilitiesList.innerHTML;
|
87 |
+
const PredictedClass = responseDOM.getElementById("predicted-class")
|
88 |
+
currentPredictedClass.innerHTML = PredictedClass.innerHTML;
|
89 |
+
|
90 |
+
var canvasElement = responseDOM.querySelector('.bestSellers');
|
91 |
+
console.log(canvasElement);
|
92 |
+
chartData = canvasElement.getAttribute('data-chart');
|
93 |
+
console.log(chartData);
|
94 |
+
if (chartData) {
|
95 |
+
var parsedChartData = JSON.parse(chartData);
|
96 |
+
var data = parsedChartData.datasets[0].data.slice(0, 5);
|
97 |
+
var backgroundColor = parsedChartData.datasets[0].backgroundColor.slice(0, 5);
|
98 |
+
var borderColor = parsedChartData.datasets[0].borderColor.slice(0, 5);
|
99 |
+
var labels = parsedChartData.labels.slice(0, 5);
|
100 |
+
|
101 |
+
initializeChart(data, backgroundColor, borderColor, labels);
|
102 |
+
}
|
103 |
+
})
|
104 |
+
.catch(error => console.error('Error:', error));
|
105 |
+
}
|
106 |
+
|
107 |
+
function startRecording() {
|
108 |
+
navigator.mediaDevices.getUserMedia({ audio: true })
|
109 |
+
.then(stream => {
|
110 |
+
mediaRecorder = new MediaRecorder(stream);
|
111 |
+
mediaRecorder.start();
|
112 |
+
|
113 |
+
audioChunks = [];
|
114 |
+
mediaRecorder.addEventListener("dataavailable", event => {
|
115 |
+
audioChunks.push(event.data);
|
116 |
+
});
|
117 |
+
|
118 |
+
document.getElementById('startRecord').disabled = true;
|
119 |
+
document.getElementById('stopRecord').disabled = false;
|
120 |
+
});
|
121 |
+
}
|
122 |
+
|
123 |
+
function stopRecording() {
|
124 |
+
mediaRecorder.stop();
|
125 |
+
document.getElementById('startRecord').disabled = false;
|
126 |
+
document.getElementById('stopRecord').disabled = true;
|
127 |
+
|
128 |
+
mediaRecorder.addEventListener("stop", () => {
|
129 |
+
const audioBlob = new Blob(audioChunks, { type: 'audio/wav' });
|
130 |
+
sendAudioToServer(audioBlob);
|
131 |
+
});
|
132 |
+
}
|
133 |
+
|
134 |
+
function handleAudioUpload() {
|
135 |
+
const fileInput = document.getElementById('audioFileInput');
|
136 |
+
if (fileInput.files.length > 0) {
|
137 |
+
const file = fileInput.files[0];
|
138 |
+
sendAudioToServer(file);
|
139 |
+
} else {
|
140 |
+
console.error('No file selected');
|
141 |
+
}
|
142 |
+
}
|
143 |
+
function sendAudioToServer(audioData) {
|
144 |
+
// ... (existing code)
|
145 |
+
|
146 |
+
|
147 |
+
}
|
148 |
+
function sendAudioToServer(audioData) {
|
149 |
+
const formData = new FormData();
|
150 |
+
formData.append('audio', audioData);
|
151 |
+
|
152 |
+
document.getElementById('loadingIndicator').style.display = 'block';
|
153 |
+
|
154 |
+
// Clear existing chart
|
155 |
+
const canvas = document.getElementById('bestSellers');
|
156 |
+
const existingChart = Chart.getChart(canvas);
|
157 |
+
if (existingChart) {
|
158 |
+
existingChart.destroy();
|
159 |
+
}
|
160 |
+
const context = canvas.getContext('2d');
|
161 |
+
context.clearRect(0, 0, canvas.width, canvas.height);
|
162 |
+
|
163 |
+
fetch('/voice', {
|
164 |
+
method: 'POST',
|
165 |
+
body: formData
|
166 |
+
})
|
167 |
+
.then(response => response.text())
|
168 |
+
.then(html => {
|
169 |
+
const parser = new DOMParser();
|
170 |
+
const newDocument = parser.parseFromString(html, 'text/html');
|
171 |
+
|
172 |
+
// Update other parts of the page as before
|
173 |
+
// Update only the necessary parts of the page
|
174 |
+
document.getElementById('class-probabilities').innerHTML = newDocument.getElementById('class-probabilities').innerHTML;
|
175 |
+
document.getElementById('predicted-class').innerHTML = newDocument.getElementById('predicted-class').innerHTML;
|
176 |
+
document.getElementById('transcribedText').innerHTML = newDocument.getElementById('transcribedText').innerHTML;
|
177 |
+
document.getElementById('classifiedText').innerHTML = newDocument.getElementById('classifiedText').innerHTML;
|
178 |
+
dynamicDiv.classList.remove('d-none');
|
179 |
+
staticDiv.classList.add('d-none');
|
180 |
+
// Update chart
|
181 |
+
const newCanvasElement = newDocument.querySelector('.bestSellers');
|
182 |
+
if (newCanvasElement) {
|
183 |
+
const newChartData = newCanvasElement.getAttribute('data-chart');
|
184 |
+
if (newChartData) {
|
185 |
+
const parsedChartData = JSON.parse(newChartData);
|
186 |
+
initializeChart(
|
187 |
+
parsedChartData.datasets[0].data.slice(0, 5),
|
188 |
+
parsedChartData.datasets[0].backgroundColor.slice(0, 5),
|
189 |
+
parsedChartData.datasets[0].borderColor.slice(0, 5),
|
190 |
+
parsedChartData.labels.slice(0, 5)
|
191 |
+
);
|
192 |
+
}
|
193 |
+
}
|
194 |
+
|
195 |
+
document.getElementById('loadingIndicator').style.display = 'none';
|
196 |
+
})
|
197 |
+
.catch(error => {
|
198 |
+
console.error('Error:', error);
|
199 |
+
document.getElementById('loadingIndicator').style.display = 'none';
|
200 |
+
});
|
201 |
+
}
|
202 |
+
fetch('/voice', {
|
203 |
+
method: 'POST',
|
204 |
+
body: formData
|
205 |
+
})
|
206 |
+
.then(response => response.text())
|
207 |
+
.then(html => {
|
208 |
+
const parser = new DOMParser();
|
209 |
+
const newDocument = parser.parseFromString(html, 'text/html');
|
210 |
+
|
211 |
+
|
212 |
+
|
213 |
+
// Update chart
|
214 |
+
const newCanvasElement = newDocument.querySelector('.bestSellers');
|
215 |
+
if (newCanvasElement) {
|
216 |
+
const newChartData = newCanvasElement.getAttribute('data-chart');
|
217 |
+
if (newChartData) {
|
218 |
+
const parsedChartData = JSON.parse(newChartData);
|
219 |
+
initializeChart(
|
220 |
+
parsedChartData.datasets[0].data.slice(0, 5),
|
221 |
+
parsedChartData.datasets[0].backgroundColor.slice(0, 5),
|
222 |
+
parsedChartData.datasets[0].borderColor.slice(0, 5),
|
223 |
+
parsedChartData.labels.slice(0, 5)
|
224 |
+
);
|
225 |
+
}
|
226 |
+
}
|
227 |
+
|
228 |
+
document.getElementById('loadingIndicator').style.display = 'none';
|
229 |
+
})
|
230 |
+
.catch(error => {
|
231 |
+
console.error('Error:', error);
|
232 |
+
document.getElementById('loadingIndicator').style.display = 'none';
|
233 |
+
});
|
static/js/voice_backup.js
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
const reset = document.getElementById("reset");
|
2 |
+
const currentClassProbabilitiesList = document.getElementById("class-probabilities");
|
3 |
+
const currentPredictedClass = document.getElementById('predicted-class')
|
4 |
+
const staticDiv = document.getElementById("static");
|
5 |
+
const dynamicDiv = document.getElementById("dynamic");
|
6 |
+
var chartData;
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
// Définir la fonction initializeChart en premier
|
11 |
+
function initializeChart(data, backgroundColor, borderColor, labels) {
|
12 |
+
// Créer une nouvelle instance Chart.js pour chaque élément canvas avec la classe 'bestSellers'
|
13 |
+
data = data.map(function (element) {
|
14 |
+
return parseFloat(element).toFixed(2);
|
15 |
+
});
|
16 |
+
document.querySelectorAll('.bestSellers').forEach(function (canvas) {
|
17 |
+
// Initialiser le graphique
|
18 |
+
new Chart(canvas, {
|
19 |
+
type: 'doughnut', // Définir le type de graphique sur doughnut
|
20 |
+
data: {
|
21 |
+
datasets: [{
|
22 |
+
data: data,
|
23 |
+
backgroundColor: backgroundColor,
|
24 |
+
borderColor: borderColor,
|
25 |
+
}],
|
26 |
+
labels: labels
|
27 |
+
},
|
28 |
+
options: {
|
29 |
+
responsive: true, // Rendre le graphique responsive
|
30 |
+
cutoutPercentage: 80, // Définir le pourcentage de découpe
|
31 |
+
legend: {
|
32 |
+
display: false, // Masquer la légende
|
33 |
+
},
|
34 |
+
animation: {
|
35 |
+
animateScale: true,
|
36 |
+
animateRotate: true
|
37 |
+
},
|
38 |
+
plugins: {
|
39 |
+
datalabels: {
|
40 |
+
display: false,
|
41 |
+
align: 'center',
|
42 |
+
anchor: 'center'
|
43 |
+
}
|
44 |
+
}
|
45 |
+
}
|
46 |
+
});
|
47 |
+
});
|
48 |
+
}
|
49 |
+
document.addEventListener('DOMContentLoaded', function() {
|
50 |
+
loadResults();
|
51 |
+
});
|
52 |
+
function loadResults() {
|
53 |
+
fetch('/voice')
|
54 |
+
.then(response => response.text())
|
55 |
+
.then(html => {
|
56 |
+
const responseDOM = new DOMParser().parseFromString(html, "text/html");
|
57 |
+
const classProbabilitiesList = responseDOM.getElementById("class-probabilities");
|
58 |
+
currentClassProbabilitiesList.innerHTML = classProbabilitiesList.innerHTML;
|
59 |
+
const PredictedClass = responseDOM.getElementById("predicted-class")
|
60 |
+
currentPredictedClass.innerHTML = PredictedClass.innerHTML;
|
61 |
+
|
62 |
+
var canvasElement = responseDOM.querySelector('.bestSellers'); // Sélectionnez le premier élément avec la classe 'bestSellers'
|
63 |
+
console.log(canvasElement);
|
64 |
+
chartData = canvasElement.getAttribute('data-chart');
|
65 |
+
console.log(chartData);
|
66 |
+
var data = JSON.parse(chartData).datasets[0].data.slice(0, 5);
|
67 |
+
var backgroundColor = JSON.parse(chartData).datasets[0].backgroundColor.slice(0, 5);
|
68 |
+
var borderColor = JSON.parse(chartData).datasets[0].borderColor.slice(0, 5);
|
69 |
+
var labels = JSON.parse(chartData).labels.slice(0, 5);
|
70 |
+
|
71 |
+
// Créer de nouveaux graphiques
|
72 |
+
loadDashboardScript(data, backgroundColor, borderColor, labels);
|
73 |
+
})
|
74 |
+
.catch(error => console.error('Error:', error));
|
75 |
+
}
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
function loadDashboardScript(data, backgroundColor, borderColor, labels) { // Correction ici
|
80 |
+
var scriptElement = document.createElement('script');
|
81 |
+
scriptElement.type = 'text/javascript';
|
82 |
+
scriptElement.src = '../static/js/dashboard_pdf.js';
|
83 |
+
// Attendez que le script soit chargé avant d'appeler la fonction d'initialisation
|
84 |
+
scriptElement.onload = function () {
|
85 |
+
initializeChart(data, backgroundColor, borderColor, labels);
|
86 |
+
};
|
87 |
+
document.body.appendChild(scriptElement);
|
88 |
+
}
|
89 |
+
|
90 |
+
function destroyPreviousCharts() {
|
91 |
+
// Trouver tous les éléments canvas avec la classe 'bestSellers'
|
92 |
+
document.querySelectorAll('.bestSellers').forEach(function (canvas) {
|
93 |
+
// Récupérer l'instance du graphique
|
94 |
+
var chartInstance = Chart.getChart(canvas);
|
95 |
+
// Si une instance existe, détruire le graphique
|
96 |
+
if (chartInstance) {
|
97 |
+
chartInstance.destroy();
|
98 |
+
}
|
99 |
+
});
|
100 |
+
}
|
101 |
+
|
102 |
+
function createResponseElement(response) {
|
103 |
+
var pdfResponseElement = document.createElement('ul');
|
104 |
+
pdfResponseElement.classList.add('graph-legend-rectangle');
|
105 |
+
pdfResponseElement.innerHTML = response;
|
106 |
+
return pdfResponseElement;
|
107 |
+
}
|
108 |
+
|
109 |
+
// Modifiez la fonction reloadDashboardScript pour accepter les données supplémentaires
|
110 |
+
function reloadDashboardScript(data, backgroundColor, borderColor, labels) {
|
111 |
+
var scriptElement = document.createElement('script');
|
112 |
+
scriptElement.type = 'text/javascript';
|
113 |
+
scriptElement.src = `../static/js/dashboard_pdf.js?data=${encodeURIComponent(JSON.stringify(data))}&backgroundColor=${encodeURIComponent(JSON.stringify(backgroundColor))}&borderColor=${encodeURIComponent(JSON.stringify(borderColor))}&labels=${encodeURIComponent(JSON.stringify(labels))}`;
|
114 |
+
document.body.appendChild(scriptElement);
|
115 |
+
}
|
templates/pdf.html
CHANGED
@@ -42,6 +42,9 @@
|
|
42 |
<li class="nav-item nav-pills nav-pills-ocr">
|
43 |
<a class="nav-item nav-link " href="sentence">Text Classifier</a>
|
44 |
</li>
|
|
|
|
|
|
|
45 |
</ul>
|
46 |
</div>
|
47 |
<!-- Main navbar END -->
|
|
|
42 |
<li class="nav-item nav-pills nav-pills-ocr">
|
43 |
<a class="nav-item nav-link " href="sentence">Text Classifier</a>
|
44 |
</li>
|
45 |
+
<li class="nav-item nav-pills nav-pills-ocr">
|
46 |
+
<a class="nav-item nav-link " href="voice">SLU</a>
|
47 |
+
</li>
|
48 |
</ul>
|
49 |
</div>
|
50 |
<!-- Main navbar END -->
|
templates/sentence.html
CHANGED
@@ -44,6 +44,9 @@
|
|
44 |
<li class="nav-item nav-pills nav-pills-ocr">
|
45 |
<a class="nav-item nav-link active" href="sentence">Text Classifier</a>
|
46 |
</li>
|
|
|
|
|
|
|
47 |
</ul>
|
48 |
</div>
|
49 |
<!-- Main navbar END -->
|
|
|
44 |
<li class="nav-item nav-pills nav-pills-ocr">
|
45 |
<a class="nav-item nav-link active" href="sentence">Text Classifier</a>
|
46 |
</li>
|
47 |
+
<li class="nav-item nav-pills nav-pills-ocr">
|
48 |
+
<a class="nav-item nav-link " href="voice">SLU</a>
|
49 |
+
</li>
|
50 |
</ul>
|
51 |
</div>
|
52 |
<!-- Main navbar END -->
|
templates/voice.html
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en-US">
|
3 |
+
|
4 |
+
<head>
|
5 |
+
<title>Speech Transcription</title>
|
6 |
+
<link rel="icon" href="https://cdn-icons-png.flaticon.com/512/5262/5262072.png">
|
7 |
+
<link rel="stylesheet" href="../static/css/style2.css">
|
8 |
+
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/font/bootstrap-icons.min.css">
|
9 |
+
<link rel="stylesheet" href="../static/css/vendor.bundle.base.css">
|
10 |
+
</head>
|
11 |
+
|
12 |
+
<body style="background-color: #1F2020;">
|
13 |
+
<nav class="navbar navbar-expand-lg bg-ocr mb-5">
|
14 |
+
<div class="container h-100">
|
15 |
+
<!-- Logo START -->
|
16 |
+
<a class="navbar-brand" href="pdf">
|
17 |
+
<img class="navbar-brand-item" src="../static/icons/avignon_universite_blanc_RVB.png" alt="logo">
|
18 |
+
</a>
|
19 |
+
<!-- Logo END -->
|
20 |
+
|
21 |
+
<!-- Responsive navbar toggler -->
|
22 |
+
<button class="navbar-toggler ms-auto icon-md btn btn-light p-0 collapsed" type="button"
|
23 |
+
data-bs-toggle="collapse" data-bs-target="#navbarCollapse" aria-controls="navbarCollapse"
|
24 |
+
aria-expanded="false" aria-label="Toggle navigation">
|
25 |
+
<span class="navbar-toggler-animation">
|
26 |
+
<span></span>
|
27 |
+
<span></span>
|
28 |
+
<span></span>
|
29 |
+
</span>
|
30 |
+
</button>
|
31 |
+
|
32 |
+
<!-- Main navbar START -->
|
33 |
+
<div class="navbar-collapse collapse" id="navbarCollapse">
|
34 |
+
<ul class="navbar-nav navbar-nav-scroll ms-auto p-xl-0">
|
35 |
+
<li class="nav-item nav-pills nav-pills-ocr">
|
36 |
+
<a class="nav-item nav-link mb-5" href="pdf">PDF Classifier</a>
|
37 |
+
</li>
|
38 |
+
<li class="nav-item nav-pills nav-pills-ocr">
|
39 |
+
<a class="nav-item nav-link " href="sentence">Text Classifier</a>
|
40 |
+
</li>
|
41 |
+
<li class="nav-item nav-pills nav-pills-ocr">
|
42 |
+
<a class="nav-item nav-link active" href="voice">SLU</a>
|
43 |
+
</li>
|
44 |
+
</ul>
|
45 |
+
</div>
|
46 |
+
<!-- Main navbar END -->
|
47 |
+
</div>
|
48 |
+
</nav>
|
49 |
+
|
50 |
+
<main class="pt-3 pt-md-5 pb-md-5 pt-lg-0 mt-3">
|
51 |
+
<div class="container mt-lg-7">
|
52 |
+
<div class="row">
|
53 |
+
<div class="col-lg-6 mb-4">
|
54 |
+
<div class="card bg-ocr h-100">
|
55 |
+
<div class="card-body">
|
56 |
+
<h5 class="card-title text-white">Record Speech</h5>
|
57 |
+
<p class="card-text text-white-50">Click the button to start recording your speech.</p>
|
58 |
+
<div class="mt-auto text-center">
|
59 |
+
<button id="startRecord" class="btn btn-ocr">Start Recording</button>
|
60 |
+
<button id="stopRecord" class="btn btn-green" disabled>Stop Recording</button>
|
61 |
+
</div>
|
62 |
+
</div>
|
63 |
+
</div>
|
64 |
+
</div>
|
65 |
+
<div class="col-lg-6 mb-4">
|
66 |
+
<div class="card bg-ocr">
|
67 |
+
<div class="card-body">
|
68 |
+
<h5 class="card-title text-white">Upload Audio File</h5>
|
69 |
+
<p class="card-text text-white-50">Click or drag and drop to upload an audio file.</p>
|
70 |
+
<div class="file-upload-wrapper" id="fileUploadWrapper">
|
71 |
+
<input type="file" id="audioFileInput" accept="audio/*">
|
72 |
+
<div class="file-upload-text">
|
73 |
+
<i class="bi bi-cloud-upload" style="font-size: 2rem;"></i>
|
74 |
+
<p>Click or drag audio file here</p>
|
75 |
+
<p class="file-name"></p>
|
76 |
+
</div>
|
77 |
+
</div>
|
78 |
+
<div class="text-center">
|
79 |
+
<button id="uploadAudio" class="btn btn-ocr mt-3 text-center">Upload and
|
80 |
+
Transcribe</button>
|
81 |
+
</div>
|
82 |
+
</div>
|
83 |
+
</div>
|
84 |
+
</div>
|
85 |
+
</div>
|
86 |
+
<h1 class="text-center text-white-50"> Results</h1>
|
87 |
+
<div class="card" id = 'static' style="background-color: #303131; border: 2px dashed rgb(82, 82, 82);">
|
88 |
+
<div class="card-body text-center" id="static">
|
89 |
+
<div class="col-12 d-flex justify-content-center">
|
90 |
+
<div class="col-sm-12 d-inline align-items-center" style="height: 175px; width: 229px;">
|
91 |
+
<div class="flex-shrink-0 avatar avatar-lg me-2 mb-3 mt-4">
|
92 |
+
<img class="avatar-img rounded-circle"
|
93 |
+
src="../static/icons/logo_header_128x128.png" alt="">
|
94 |
+
</div>
|
95 |
+
<h5 class="card-title text-white-50">Get more insights about your speech 📣📢.</h5>
|
96 |
+
</div>
|
97 |
+
|
98 |
+
</div>
|
99 |
+
</div>
|
100 |
+
</div>
|
101 |
+
<div class="row d-none" id = 'dynamic'>
|
102 |
+
<div class="col-4">
|
103 |
+
<div class="nav flex-column position-sticky top-10 shadow-lg" style="background-color: #222424;">
|
104 |
+
<div class="card mb-3" style="background-color: #303131; border: 2px dashed rgb(82, 82, 82);">
|
105 |
+
<div class="card-body">
|
106 |
+
<h4 class="card-title text-white">Text's Category</h4>
|
107 |
+
<div class="row d-flex">
|
108 |
+
<div class="col-sm-7 col-6">
|
109 |
+
<ul class="graphl-legend-rectangle" id="class-probabilities">
|
110 |
+
{% if class_probabilities %}
|
111 |
+
{% for class_label, probability in class_probabilities.items() %}
|
112 |
+
{% if loop.index <= 5 %}
|
113 |
+
<li class="text-white-50">
|
114 |
+
<span class="bg-{{ class_label[1] }}"></span>
|
115 |
+
<div class="d-flex justify-content-center">
|
116 |
+
{{ class_label[0] }}:
|
117 |
+
<span class="text-white w-100"> {{ "%.2f" % (probability) }}%</span>
|
118 |
+
</div>
|
119 |
+
</li>
|
120 |
+
{% endif %}
|
121 |
+
{% endfor %}
|
122 |
+
{% endif %}
|
123 |
+
</ul>
|
124 |
+
</div>
|
125 |
+
<div class="col-sm-5 grid-margin col-6">
|
126 |
+
<canvas class="bestSellers" data-chart='{{ chart_data | tojson}}'
|
127 |
+
id="bestSellers"></canvas>
|
128 |
+
</div>
|
129 |
+
</div>
|
130 |
+
<div class="mb-lg-0 text-white-50">
|
131 |
+
la classe la plus dominante est <span class="fw-bolder text-white"
|
132 |
+
id="predicted-class">{{
|
133 |
+
predicted_class[0] if predicted_class else ""
|
134 |
+
}}</span>
|
135 |
+
</div>
|
136 |
+
</div>
|
137 |
+
</div>
|
138 |
+
<div class="card my-auto mt-3"
|
139 |
+
style="background-color: #303131; border: 2px dashed rgb(82, 82, 82);">
|
140 |
+
<div class="card-body">
|
141 |
+
<h4 class="card-title text-white">Legend</h4>
|
142 |
+
<div class="row d-flex">
|
143 |
+
<div class="col-sm-6 col-6">
|
144 |
+
<ul class="graphl-legend-rectangle">
|
145 |
+
<li class="text-white-50"><span class="bg-info "></span>vehicles
|
146 |
+
</li>
|
147 |
+
<li class="text-white-50"><span class="bg-success"></span>environments
|
148 |
+
</li>
|
149 |
+
<li class="text-white-50"><span class="bg-danger"></span>energies
|
150 |
+
</li>
|
151 |
+
<li class="text-white-50"><span class="bg-primary"></span>Physics
|
152 |
+
</li>
|
153 |
+
<li class="text-white-50"><span class="bg-moss"></span>robotics
|
154 |
+
</li>
|
155 |
+
<li class="text-white-50"><span class="bg-agri"></span>agriculture
|
156 |
+
</li>
|
157 |
+
<li class="text-white-50"><span class="bg-yellow"></span>ML
|
158 |
+
</li>
|
159 |
+
<li class="text-white-50"><span class="bg-warning"></span>economies
|
160 |
+
</li>
|
161 |
+
<li class="text-white-50"><span class="bg-vanila"></span>technologies
|
162 |
+
</li>
|
163 |
+
</ul>
|
164 |
+
</div>
|
165 |
+
<div class="col-sm-6 col-6">
|
166 |
+
<ul class="graphl-legend-rectangle">
|
167 |
+
|
168 |
+
<li class="text-white-50"><span class="bg-coffe"></span>mathematics
|
169 |
+
</li>
|
170 |
+
<li class="text-white-50"><span class="bg-orange "></span>sports
|
171 |
+
</li>
|
172 |
+
<li class="text-white-50"><span class="bg-cyan"></span>AI
|
173 |
+
</li>
|
174 |
+
<li class="text-white-50"><span class="bg-rosy"></span>Innovation
|
175 |
+
</li>
|
176 |
+
<li class="text-white-50"><span class="bg-picton"></span>Science
|
177 |
+
</li>
|
178 |
+
<li class="text-white-50"><span class="bg-purple"></span>Societies
|
179 |
+
</li>
|
180 |
+
<li class="text-white-50"><span class="bg-pink"></span>administration
|
181 |
+
</li>
|
182 |
+
<li class="text-white-50"><span class="bg-cambridge"></span>biology
|
183 |
+
</li>
|
184 |
+
</ul>
|
185 |
+
</div>
|
186 |
+
</div>
|
187 |
+
</div>
|
188 |
+
</div>
|
189 |
+
</div>
|
190 |
+
</div>
|
191 |
+
|
192 |
+
<div class="col-8">
|
193 |
+
<div class="card" style="background-color: #303131; border: 2px dashed rgb(82, 82, 82);">
|
194 |
+
<div class="card-body">
|
195 |
+
<h5 class="card-title text-white mb-3">Transcribed and Classified Text</h5>
|
196 |
+
<div id="transcribedText" class="text-white-50 mb-4"></div>
|
197 |
+
<div id="static" class="text-center">
|
198 |
+
<div class="col-12 d-flex justify-content-center">
|
199 |
+
<div class="col-sm-12 d-inline align-items-center" id="classifiedText">
|
200 |
+
{% if sentences_prediction %}
|
201 |
+
{% for sentence, color in sentences_prediction.items() %}
|
202 |
+
<span class="text-bold text-start bg-{{color[1]}}">
|
203 |
+
{{sentence}}
|
204 |
+
</span>
|
205 |
+
{% endfor %}
|
206 |
+
{% endif %}
|
207 |
+
</div>
|
208 |
+
</div>
|
209 |
+
</div>
|
210 |
+
</div>
|
211 |
+
</div>
|
212 |
+
</div>
|
213 |
+
</div>
|
214 |
+
</div>
|
215 |
+
</main>
|
216 |
+
|
217 |
+
<div id="loadingIndicator" style="display: none; position: fixed; top: 0; left: 0; width: 100%; height: 100%; background-color: rgba(0,0,0,0.5); z-index: 9999;">
|
218 |
+
<div style="position: absolute; top: 50%; left: 50%; transform: translate(-50%, -50%); color: white;">
|
219 |
+
Processing...
|
220 |
+
</div>
|
221 |
+
</div>
|
222 |
+
|
223 |
+
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
|
224 |
+
<script src="../static/js/voice.js" type="text/javascript"></script>
|
225 |
+
<script src="../static/js/vendor.bundle.base.js"></script>
|
226 |
+
</body>
|
227 |
+
|
228 |
+
</html>
|
templates/voice_backup.html
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en-US">
|
3 |
+
|
4 |
+
<head>
|
5 |
+
<title>Speech Transcription</title>
|
6 |
+
<link rel="icon" href="https://cdn-icons-png.flaticon.com/512/5262/5262072.png">
|
7 |
+
<link rel="stylesheet" href="../static/css/style2.css">
|
8 |
+
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/font/bootstrap-icons.min.css">
|
9 |
+
<link rel="stylesheet" href="../static/css/vendor.bundle.base.css">
|
10 |
+
<style>
|
11 |
+
|
12 |
+
</style>
|
13 |
+
</head>
|
14 |
+
|
15 |
+
<body style="background-color: #1F2020;">
|
16 |
+
<nav class="navbar navbar-expand-lg bg-ocr mb-5">
|
17 |
+
<div class="container h-100">
|
18 |
+
<!-- Logo START -->
|
19 |
+
<a class="navbar-brand" href="pdf">
|
20 |
+
<img class="navbar-brand-item" src="../static/icons/avignon_universite_blanc_RVB.png" alt="logo">
|
21 |
+
</a>
|
22 |
+
<!-- Logo END -->
|
23 |
+
|
24 |
+
<!-- Responsive navbar toggler -->
|
25 |
+
<button class="navbar-toggler ms-auto icon-md btn btn-light p-0 collapsed" type="button"
|
26 |
+
data-bs-toggle="collapse" data-bs-target="#navbarCollapse" aria-controls="navbarCollapse"
|
27 |
+
aria-expanded="false" aria-label="Toggle navigation">
|
28 |
+
<span class="navbar-toggler-animation">
|
29 |
+
<span></span>
|
30 |
+
<span></span>
|
31 |
+
<span></span>
|
32 |
+
</span>
|
33 |
+
</button>
|
34 |
+
|
35 |
+
<!-- Main navbar START -->
|
36 |
+
<div class="navbar-collapse collapse" id="navbarCollapse">
|
37 |
+
<ul class="navbar-nav navbar-nav-scroll ms-auto p-xl-0">
|
38 |
+
<!-- Nav item 1 Demos -->
|
39 |
+
<li class="nav-item nav-pills nav-pills-ocr">
|
40 |
+
<a class="nav-item nav-link mb-5" href="pdf">PDF Classifier</a>
|
41 |
+
</li>
|
42 |
+
<!-- Nav item 2 Pages -->
|
43 |
+
<li class="nav-item nav-pills nav-pills-ocr">
|
44 |
+
<a class="nav-item nav-link " href="sentence">Text Classifier</a>
|
45 |
+
</li>
|
46 |
+
<li class="nav-item nav-pills nav-pills-ocr">
|
47 |
+
<a class="nav-item nav-link active" href="voice">SLU</a>
|
48 |
+
</li>
|
49 |
+
</ul>
|
50 |
+
</div>
|
51 |
+
<!-- Main navbar END -->
|
52 |
+
</div>
|
53 |
+
</nav>
|
54 |
+
|
55 |
+
<main class="pt-3 pt-md-5 pb-md-5 pt-lg-0 mt-3">
|
56 |
+
<div class="container mt-lg-7">
|
57 |
+
<div class="row">
|
58 |
+
<div class="col-lg-6 mb-4">
|
59 |
+
<div class="card bg-ocr h-100">
|
60 |
+
<div class="card-body">
|
61 |
+
<h5 class="card-title text-white">Record Speech</h5>
|
62 |
+
<p class="card-text text-white-50">Click the button to start recording your speech.</p>
|
63 |
+
<div class="mt-auto text-center">
|
64 |
+
<button id="startRecord" class="btn btn-ocr">Start Recording</button>
|
65 |
+
<button id="stopRecord" class="btn btn-green" disabled>Stop Recording</button>
|
66 |
+
</div>
|
67 |
+
</div>
|
68 |
+
</div>
|
69 |
+
</div>
|
70 |
+
<div class="col-lg-6 mb-4">
|
71 |
+
<div class="card bg-ocr">
|
72 |
+
<div class="card-body">
|
73 |
+
<h5 class="card-title text-white">Upload Audio File</h5>
|
74 |
+
<p class="card-text text-white-50">Click or drag and drop to upload an audio file.</p>
|
75 |
+
<div class="file-upload-wrapper" id="fileUploadWrapper">
|
76 |
+
<input type="file" id="audioFileInput" accept="audio/*">
|
77 |
+
<div class="file-upload-text">
|
78 |
+
<i class="bi bi-cloud-upload" style="font-size: 2rem;"></i>
|
79 |
+
<p>Click or drag audio file here</p>
|
80 |
+
<p class="file-name"></p>
|
81 |
+
</div>
|
82 |
+
</div>
|
83 |
+
<div class="text-center">
|
84 |
+
<button id="uploadAudio" class="btn btn-ocr mt-3 text-center">Upload and
|
85 |
+
Transcribe</button>
|
86 |
+
</div>
|
87 |
+
</div>
|
88 |
+
</div>
|
89 |
+
</div>
|
90 |
+
</div>
|
91 |
+
<h1 class="text-center text-white-50"> Results</h1>
|
92 |
+
<div class="row">
|
93 |
+
<div class="col-4">
|
94 |
+
<div class="nav flex-column position-sticky top-10 shadow-lg" style="background-color: #222424;">
|
95 |
+
<div class="card mb-3" style="background-color: #303131; border: 2px dashed rgb(82, 82, 82);">
|
96 |
+
<div class="card-body">
|
97 |
+
<h4 class="card-title text-white">Text's Category</h4>
|
98 |
+
<div class="row d-flex">
|
99 |
+
<div class="col-sm-7 col-6">
|
100 |
+
<ul class="graphl-legend-rectangle" id="class-probabilities">
|
101 |
+
{% for class_label, probability in class_probabilities.items() %}
|
102 |
+
{% if loop.index <= 5 %} <li class="text-white-50">
|
103 |
+
<span class="bg-{{ class_label[1] }}"></span>
|
104 |
+
<div class="d-flex justify-content-center">
|
105 |
+
{{ class_label[0] }}:
|
106 |
+
<span class="text-white w-100"> {{ "%.2f" % probability
|
107 |
+
}}%</span>
|
108 |
+
</div>
|
109 |
+
</li>
|
110 |
+
{% endif %}
|
111 |
+
{% endfor %}
|
112 |
+
</ul>
|
113 |
+
</div>
|
114 |
+
<div class="col-sm-5 grid-margin col-6">
|
115 |
+
<canvas class="bestSellers" data-chart='{{ chart_data | tojson }}'
|
116 |
+
id="bestSellers#"></canvas>
|
117 |
+
</div>
|
118 |
+
</div>
|
119 |
+
<div class="mb-lg-0 text-white-50">
|
120 |
+
la classe la plus dominante est <span class="fw-bolder text-white"
|
121 |
+
id="predicted-class">{{
|
122 |
+
predicted_class[0]
|
123 |
+
}}</span>
|
124 |
+
</div>
|
125 |
+
</div>
|
126 |
+
</div>
|
127 |
+
<div class="card my-auto mt-3"
|
128 |
+
style="background-color: #303131; border: 2px dashed rgb(82, 82, 82);">
|
129 |
+
<div class="card-body">
|
130 |
+
<h4 class="card-title text-white">Legend</h4>
|
131 |
+
<div class="row d-flex">
|
132 |
+
<div class="col-sm-6 col-6">
|
133 |
+
<ul class="graphl-legend-rectangle">
|
134 |
+
<li class="text-white-50"><span class="bg-info "></span>vehicles
|
135 |
+
</li>
|
136 |
+
<li class="text-white-50"><span class="bg-success"></span>environments
|
137 |
+
</li>
|
138 |
+
<li class="text-white-50"><span class="bg-danger"></span>energies
|
139 |
+
</li>
|
140 |
+
<li class="text-white-50"><span class="bg-primary"></span>Physics
|
141 |
+
</li>
|
142 |
+
<li class="text-white-50"><span class="bg-moss"></span>robotics
|
143 |
+
</li>
|
144 |
+
<li class="text-white-50"><span class="bg-agri"></span>agriculture
|
145 |
+
</li>
|
146 |
+
<li class="text-white-50"><span class="bg-yellow"></span>ML
|
147 |
+
</li>
|
148 |
+
<li class="text-white-50"><span class="bg-warning"></span>economies
|
149 |
+
</li>
|
150 |
+
<li class="text-white-50"><span class="bg-vanila"></span>technologies
|
151 |
+
</li>
|
152 |
+
</ul>
|
153 |
+
</div>
|
154 |
+
<div class="col-sm-6 col-6">
|
155 |
+
<ul class="graphl-legend-rectangle">
|
156 |
+
|
157 |
+
<li class="text-white-50"><span class="bg-coffe"></span>mathematics
|
158 |
+
</li>
|
159 |
+
<li class="text-white-50"><span class="bg-orange "></span>sports
|
160 |
+
</li>
|
161 |
+
<li class="text-white-50"><span class="bg-cyan"></span>AI
|
162 |
+
</li>
|
163 |
+
<li class="text-white-50"><span class="bg-rosy"></span>Innovation
|
164 |
+
</li>
|
165 |
+
<li class="text-white-50"><span class="bg-picton"></span>Science
|
166 |
+
</li>
|
167 |
+
<li class="text-white-50"><span class="bg-purple"></span>Societies
|
168 |
+
</li>
|
169 |
+
<li class="text-white-50"><span class="bg-pink"></span>administration
|
170 |
+
</li>
|
171 |
+
<li class="text-white-50"><span class="bg-cambridge"></span>biology
|
172 |
+
</li>
|
173 |
+
</ul>
|
174 |
+
</div>
|
175 |
+
</div>
|
176 |
+
</div>
|
177 |
+
</div>
|
178 |
+
</div>
|
179 |
+
</div>
|
180 |
+
|
181 |
+
<div class="col-8">
|
182 |
+
<div class="card" style="background-color: #303131; border: 2px dashed rgb(82, 82, 82);">
|
183 |
+
<div class="card-body text-center" id="static">
|
184 |
+
<div class="col-12 d-flex justify-content-center">
|
185 |
+
<div class="col-sm-12 d-inline align-items-center">
|
186 |
+
{% for sentence , color in sentences_prediction.items() %}
|
187 |
+
<span class="text-bold text-start bg-{{color[1]}}">
|
188 |
+
{{sentence}}
|
189 |
+
</span>
|
190 |
+
{% endfor %}
|
191 |
+
</div>
|
192 |
+
|
193 |
+
</div>
|
194 |
+
</div>
|
195 |
+
</div>
|
196 |
+
</div>
|
197 |
+
</div>
|
198 |
+
|
199 |
+
</div>
|
200 |
+
</main>
|
201 |
+
<!-- Container END -->
|
202 |
+
<script src="../static/js/dashboard_voice.js"></script>
|
203 |
+
<script src="../static/js/Chart.min.js"></script>
|
204 |
+
<script src="../static/js/voice.js" type="text/javascript"></script>
|
205 |
+
<script src="../static/js/vendor.bundle.base.js"></script>
|
206 |
+
|
207 |
+
</body>
|
208 |
+
|
209 |
+
</html>
|