Initial commit
Browse files- Chatbot-Albatros.py +149 -0
- Procfile +1 -0
- requirements.txt +9 -0
Chatbot-Albatros.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import json
|
3 |
+
import gradio as gr
|
4 |
+
import fitz
|
5 |
+
import logging
|
6 |
+
import base64
|
7 |
+
from flask import Flask, request, jsonify
|
8 |
+
import io
|
9 |
+
import os
|
10 |
+
import base64
|
11 |
+
import io
|
12 |
+
from PyPDF2 import PdfReader
|
13 |
+
|
14 |
+
# Configuration du logger
|
15 |
+
logging.basicConfig(level=logging.ERROR)
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
app = Flask(__name__)
|
19 |
+
|
20 |
+
# Remplacez par votre clé API
|
21 |
+
OPENROUTER_API_KEY = "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"
|
22 |
+
YOUR_SITE_URL = "votre-site.com" # Remplacez par votre URL
|
23 |
+
YOUR_APP_NAME = "MonChatbot"
|
24 |
+
|
25 |
+
def extract_text_from_pdf(pdf_file):
|
26 |
+
doc = fitz.open(pdf_file)
|
27 |
+
text = ""
|
28 |
+
for page in doc:
|
29 |
+
text += page.get_text()
|
30 |
+
return text
|
31 |
+
|
32 |
+
def chatbot_response(message, history, pdf_text=None, image_path=None):
|
33 |
+
messages = [{"role": "system", "content": "Vous êtes un assistant IA utile et amical, capable d'analyser des images et du texte."}]
|
34 |
+
|
35 |
+
if pdf_text:
|
36 |
+
messages.append({"role": "system", "content": f"Le contenu du PDF est : {pdf_text}"})
|
37 |
+
|
38 |
+
for human, assistant in history:
|
39 |
+
messages.append({"role": "user", "content": human})
|
40 |
+
if assistant is not None:
|
41 |
+
messages.append({"role": "assistant", "content": assistant})
|
42 |
+
|
43 |
+
message_content = message
|
44 |
+
if image_path:
|
45 |
+
encoded_image = encode_image(image_path)
|
46 |
+
message_content = [
|
47 |
+
{"type": "text", "text": message},
|
48 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}}
|
49 |
+
]
|
50 |
+
|
51 |
+
messages.append({"role": "user", "content": message_content})
|
52 |
+
|
53 |
+
try:
|
54 |
+
response = requests.post(
|
55 |
+
url="https://openrouter.ai/api/v1/chat/completions",
|
56 |
+
headers={
|
57 |
+
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
|
58 |
+
"HTTP-Referer": f"{YOUR_SITE_URL}",
|
59 |
+
"X-Title": f"{YOUR_APP_NAME}",
|
60 |
+
"Content-Type": "application/json"
|
61 |
+
},
|
62 |
+
data=json.dumps({
|
63 |
+
"model": "mistralai/pixtral-12b:free",
|
64 |
+
"messages": messages
|
65 |
+
})
|
66 |
+
)
|
67 |
+
if response.status_code == 200:
|
68 |
+
data = response.json()
|
69 |
+
return data['choices'][0]['message']['content']
|
70 |
+
else:
|
71 |
+
return f"Erreur {response.status_code}: {response.text}"
|
72 |
+
except Exception as e:
|
73 |
+
logger.error(f"Erreur lors de l'appel API: {str(e)}")
|
74 |
+
return f"Erreur: {str(e)}"
|
75 |
+
|
76 |
+
@app.route('/api/chatbot', methods=['POST'])
|
77 |
+
def api_chatbot():
|
78 |
+
try:
|
79 |
+
# Récupérer le message et le contenu encodé en base64 du PDF
|
80 |
+
message = request.json.get('message')
|
81 |
+
pdf_base64 = request.json.get('pdf_content') # PDF encodé en base64
|
82 |
+
|
83 |
+
if not pdf_base64:
|
84 |
+
return jsonify({'error': 'Aucun contenu PDF reçu.'}), 400
|
85 |
+
|
86 |
+
# Décoder le contenu base64 en fichier PDF
|
87 |
+
pdf_data = base64.b64decode(pdf_base64)
|
88 |
+
pdf_file = io.BytesIO(pdf_data)
|
89 |
+
|
90 |
+
# Extraire le texte du PDF
|
91 |
+
pdf_reader = PdfReader(pdf_file)
|
92 |
+
pdf_text = ""
|
93 |
+
for page in pdf_reader.pages:
|
94 |
+
pdf_text += page.extract_text()
|
95 |
+
|
96 |
+
if not pdf_text:
|
97 |
+
return jsonify({'error': 'Impossible d\'extraire le texte du PDF.'}), 500
|
98 |
+
|
99 |
+
# Utiliser le texte extrait du PDF dans la réponse du chatbot
|
100 |
+
response = chatbot_response(message, history=[], pdf_text=pdf_text)
|
101 |
+
|
102 |
+
return jsonify({'response': response})
|
103 |
+
except Exception as e:
|
104 |
+
return jsonify({'error': str(e)}), 500
|
105 |
+
|
106 |
+
# Créer l'interface Gradio pour une utilisation normale
|
107 |
+
# Définir la fonction user
|
108 |
+
def user(user_message, history, pdf_text, image):
|
109 |
+
# Retourne un message vide et met à jour l'historique de la conversation
|
110 |
+
return "", history + [[user_message, None]], pdf_text, image
|
111 |
+
|
112 |
+
def bot(history, pdf_text, image):
|
113 |
+
if history:
|
114 |
+
# Le dernier message utilisateur est passé à la fonction chatbot_response
|
115 |
+
bot_message = chatbot_response(history[-1][0], history[:-1], pdf_text, image)
|
116 |
+
history[-1][1] = bot_message # Mettre à jour l'historique avec la réponse du bot
|
117 |
+
return history
|
118 |
+
return []
|
119 |
+
|
120 |
+
def clear_chat():
|
121 |
+
return [], None, None
|
122 |
+
|
123 |
+
# Interface Gradio
|
124 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
125 |
+
chatbot = gr.Chatbot(label="Historique de la conversation")
|
126 |
+
msg = gr.Textbox(label="Votre message", placeholder="Tapez votre message ici...")
|
127 |
+
pdf_upload = gr.File(label="Téléchargez un fichier PDF", file_types=[".pdf"])
|
128 |
+
image_upload = gr.Image(type="filepath", label="Téléchargez une image")
|
129 |
+
clear = gr.Button("Effacer la conversation")
|
130 |
+
pdf_text = gr.State()
|
131 |
+
|
132 |
+
# Lorsqu'un fichier PDF est uploadé, extrait le texte du PDF
|
133 |
+
pdf_upload.change(lambda file: extract_text_from_pdf(file), pdf_upload, pdf_text)
|
134 |
+
|
135 |
+
# Lorsqu'un message est envoyé, met à jour le chatbot
|
136 |
+
msg.submit(user, [msg, chatbot, pdf_text, image_upload], [msg, chatbot, pdf_text, image_upload], queue=False).then(
|
137 |
+
bot, [chatbot, pdf_text, image_upload], chatbot
|
138 |
+
)
|
139 |
+
|
140 |
+
# Efface la conversation
|
141 |
+
clear.click(clear_chat, None, [chatbot, pdf_text, image_upload], queue=False)
|
142 |
+
|
143 |
+
demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 5000)))
|
144 |
+
|
145 |
+
# Lancer l'application Flask pour la gestion des API
|
146 |
+
|
147 |
+
if __name__ == "__main__":
|
148 |
+
port = int(os.environ.get("PORT", 5000)) # Utilise le port fourni par Heroku
|
149 |
+
app.run(host="0.0.0.0", port=port) # Assure-toi que Flask/Gradio écoute sur 0.0.0.0
|
Procfile
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
web: python Chatbot-Albatros.py
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
requests==2.31.0
|
2 |
+
gradio==4.44.1
|
3 |
+
PyMuPDF==1.24.10
|
4 |
+
Flask==3.0.3
|
5 |
+
gunicorn
|
6 |
+
PyPDF2==3.0.1
|
7 |
+
logging
|
8 |
+
base64
|
9 |
+
|