File size: 5,406 Bytes
988597d
0de48e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
988597d
0de48e4
 
 
 
 
 
 
 
 
 
 
 
 
00999c0
39e8603
0de48e4
 
 
 
 
 
 
 
 
 
 
 
 
 
14db13d
0de48e4
 
 
 
 
 
988597d
0de48e4
 
 
 
 
 
 
 
 
 
 
 
988597d
0de48e4
 
 
 
 
 
 
 
 
 
988597d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
from random import randint
from all_models import models

from externalmod import gr_Interface_load, randomize_seed

import asyncio
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.


def load_fn(models):
    global models_load
    models_load = {}
    
    for model in models:
        if model not in models_load.keys():
            try:
                m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
            except Exception as error:
                print(error)
                m = gr.Interface(lambda: None, ['text'], ['image'])
            models_load.update({model: m})


load_fn(models)


num_models = 9

default_models = models[:num_models]
inference_timeout = 600
MAX_SEED=666666666
starting_seed = randint(666666000, 666666666)

def extend_choices(choices):
    return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']


def update_imgbox(choices):
    choices_plus = extend_choices(choices[:num_models])
    return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]

async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
    from pathlib import Path
    kwargs = {}
    noise = ""
    kwargs["seed"] = seed
    task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
                               prompt=f'{prompt} {noise}', **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except (Exception, asyncio.TimeoutError) as e:
        print(e)
        print(f"Task timed out: {model_str}")
        if not task.done(): task.cancel()
        result = None
    if task.done() and result is not None:
        with lock:
            png_path = "image.png"
            result.save(png_path)
            image = str(Path(png_path).resolve())
            return image
    return None




def gen_fnseed(model_str, prompt, seed=1):
    if model_str == 'NA':
        return None
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_str, prompt, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"Task aborted: {model_str}")
        result = None
        with lock:
            image = "https://huggingface.co./spaces/Yntec/ToyWorld/resolve/main/error.png"
        result = image
    finally:
        loop.close()
    return result

with gr.Blocks(theme='Yntec/HaleyCH_Theme_Yellow_Blue') as demo:
    with gr.Tab('🤗 January 2025 is the date this space was launched (they were brand new back then!) 🤗'): 
        txt_input = gr.Textbox(label='Your prompt:', lines=4)
        gen_button = gr.Button('Generate up to 9 images in up to 3 minutes total')
        with gr.Row():
            seed = gr.Slider(label="Use a seed to replicate the same image later (maximum 666666666)", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed, scale=3)
            seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary", scale=1)    
        seed_rand.click(randomize_seed, None, [seed], queue=False)
        #stop_button = gr.Button('Stop', variant = 'secondary', interactive = False)
               
        gen_button.click(lambda s: gr.update(interactive = True), None)
        gr.HTML(
        """
            <div style="text-align: center; max-width: 1200px; margin: 0 auto;">
              <div>
                <body>
                <div class="center"><p style="margin-bottom: 10px; color: #4848ff;">Scroll down to see more images and select models.</p>
                </div>
                </body>
              </div>
            </div>
        """
               )
        with gr.Row():
            output = [gr.Image(label = m, min_width=480) for m in default_models]
            current_models = [gr.Textbox(m, visible = False) for m in default_models]
                        
            for m, o in zip(current_models, output):
                gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fnseed,
                            inputs=[m, txt_input, seed], outputs=[o], concurrency_limit=None, queue=False)
                #stop_button.click(lambda s: gr.update(interactive = False), None, stop_button, cancels = [gen_event])
        with gr.Accordion('Model selection'):
            model_choice = gr.CheckboxGroup(models, label = 'Untick the models you will not be using', value=default_models, interactive=True)
            #model_choice = gr.CheckboxGroup(models, label = f'Choose up to {num_models} different models from the 2 available! Untick them to only use one!', value = default_models, multiselect = True, max_choices = num_models, interactive = True, filterable = False)
            model_choice.change(update_imgbox, model_choice, output)
            model_choice.change(extend_choices, model_choice, current_models)
        with gr.Row():
            gr.HTML(
    """
        <div class="footer">
        <p> For more than a hundred times more models (that's not a typo) check out <a href="https://huggingface.co./spaces/Yntec/ToyWorld">Toy World</a>!</a>
        </p>
    """
)

demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(show_api=False, max_threads=400)