Spaces:
Runtime error
Runtime error
File size: 12,437 Bytes
96a9519 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import os
import imageio
import numpy as np
from typing import Union, Optional
import torch
import torchvision
import torch.distributed as dist
from tqdm import tqdm
from einops import rearrange
import cv2
import math
import moviepy.editor as mpy
from PIL import Image
# We recommend to use the following affinity score(motion magnitude)
# Also encourage to try to construct different score by yourself
RANGE_LIST = [
[1.0, 0.9, 0.85, 0.85, 0.85, 0.8], # 0 Small Motion
[1.0, 0.8, 0.8, 0.8, 0.79, 0.78, 0.75], # Moderate Motion
[1.0, 0.8, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.6, 0.5, 0.5], # Large Motion
[1.0 , 0.9 , 0.85, 0.85, 0.85, 0.8 , 0.8 , 0.8 , 0.8 , 0.8 , 0.8 , 0.8 , 0.85, 0.85, 0.9 , 1.0 ], # Loop
[1.0 , 0.8 , 0.8 , 0.8 , 0.79, 0.78, 0.75, 0.75, 0.75, 0.75, 0.75, 0.78, 0.79, 0.8 , 0.8 , 1.0 ], # Loop
[1.0 , 0.8 , 0.7 , 0.7 , 0.7 , 0.7 , 0.6 , 0.5 , 0.5 , 0.6 , 0.7 , 0.7 , 0.7 , 0.7 , 0.8 , 1.0 ], # Loop
[0.5, 0.2], # Style Transfer Large Motion
[0.5, 0.4, 0.4, 0.4, 0.35, 0.35, 0.3, 0.25, 0.2], # Style Transfer Moderate Motion
[0.5, 0.4, 0.4, 0.4, 0.35, 0.3], # Style Transfer Candidate Small Motion
]
def zero_rank_print(s):
if (not dist.is_initialized()) or (dist.is_initialized() and dist.get_rank() == 0): print("### " + s)
def save_videos_mp4(video: torch.Tensor, path: str, fps: int=8):
video = rearrange(video, "b c t h w -> t b c h w")
num_frames, batch_size, channels, height, width = video.shape
assert batch_size == 1,\
'Only support batch size == 1'
video = video.squeeze(1)
video = rearrange(video, "t c h w -> t h w c")
def make_frame(t):
frame_tensor = video[int(t * fps)]
frame_np = (frame_tensor * 255).numpy().astype('uint8')
return frame_np
clip = mpy.VideoClip(make_frame, duration=num_frames / fps)
clip.write_videofile(path, fps=fps, codec='libx264')
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = torch.clamp((x * 255), 0, 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, outputs, fps=fps)
# DDIM Inversion
@torch.no_grad()
def init_prompt(prompt, pipeline):
uncond_input = pipeline.tokenizer(
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
return_tensors="pt"
)
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
text_input = pipeline.tokenizer(
[prompt],
padding="max_length",
max_length=pipeline.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
context = torch.cat([uncond_embeddings, text_embeddings])
return context
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
timestep, next_timestep = min(
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
beta_prod_t = 1 - alpha_prod_t
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
return next_sample
def get_noise_pred_single(latents, t, context, unet):
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
return noise_pred
@torch.no_grad()
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
context = init_prompt(prompt, pipeline)
uncond_embeddings, cond_embeddings = context.chunk(2)
all_latent = [latent]
latent = latent.clone().detach()
for i in tqdm(range(num_inv_steps)):
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
latent = next_step(noise_pred, t, latent, ddim_scheduler)
all_latent.append(latent)
return all_latent
@torch.no_grad()
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
return ddim_latents
def prepare_mask_coef(video_length:int, cond_frame:int, sim_range:list=[0.2, 1.0]):
assert len(sim_range) == 2, \
'sim_range should has the length of 2, including the min and max similarity'
assert video_length > 1, \
'video_length should be greater than 1'
assert video_length > cond_frame,\
'video_length should be greater than cond_frame'
diff = abs(sim_range[0] - sim_range[1]) / (video_length - 1)
coef = [1.0] * video_length
for f in range(video_length):
f_diff = diff * abs(cond_frame - f)
f_diff = 1 - f_diff
coef[f] *= f_diff
return coef
def prepare_mask_coef_by_statistics(video_length: int, cond_frame: int, sim_range: int):
assert video_length > 0, \
'video_length should be greater than 0'
assert video_length > cond_frame,\
'video_length should be greater than cond_frame'
range_list = RANGE_LIST
assert sim_range < len(range_list),\
f'sim_range type{sim_range} not implemented'
coef = range_list[sim_range]
coef = coef + ([coef[-1]] * (video_length - len(coef)))
order = [abs(i - cond_frame) for i in range(video_length)]
coef = [coef[order[i]] for i in range(video_length)]
return coef
def prepare_mask_coef_multi_cond(video_length:int, cond_frames:list, sim_range:list=[0.2, 1.0]):
assert len(sim_range) == 2, \
'sim_range should has the length of 2, including the min and max similarity'
assert video_length > 1, \
'video_length should be greater than 1'
assert isinstance(cond_frames, list), \
'cond_frames should be a list'
assert video_length > max(cond_frames),\
'video_length should be greater than cond_frame'
if max(sim_range) == min(sim_range):
cond_coefs = [sim_range[0]] * video_length
return cond_coefs
cond_coefs = []
for cond_frame in cond_frames:
cond_coef = prepare_mask_coef(video_length, cond_frame, sim_range)
cond_coefs.append(cond_coef)
mixed_coef = [0] * video_length
for conds in range(len(cond_frames)):
for f in range(video_length):
mixed_coef[f] = abs(cond_coefs[conds][f] - mixed_coef[f])
if conds > 0:
min_num = min(mixed_coef)
max_num = max(mixed_coef)
for f in range(video_length):
mixed_coef[f] = (mixed_coef[f] - min_num) / (max_num - min_num)
mixed_max = max(mixed_coef)
mixed_min = min(mixed_coef)
for f in range(video_length):
mixed_coef[f] = (max(sim_range) - min(sim_range)) * (mixed_coef[f] - mixed_min) / (mixed_max - mixed_min) + min(sim_range)
mixed_coef = [x if min(sim_range) <= x <= max(sim_range) else min(sim_range) if x < min(sim_range) else max(sim_range) for x in mixed_coef]
return mixed_coef
def prepare_masked_latent_cond(video_length: int, cond_frames: list):
for cond_frame in cond_frames:
assert cond_frame < video_length, \
'cond_frame should be smaller than video_length'
assert cond_frame > -1, \
f'cond_frame should be in the range of [0, {video_length}]'
cond_frames.sort()
nearest = [cond_frames[0]] * video_length
for f in range(video_length):
for cond_frame in cond_frames:
if abs(nearest[f] - f) > abs(cond_frame - f):
nearest[f] = cond_frame
maked_latent_cond = nearest
return maked_latent_cond
def estimated_kernel_size(frame_width: int, frame_height: int) -> int:
"""Estimate kernel size based on video resolution."""
# TODO: This equation is based on manual estimation from a few videos.
# Create a more comprehensive test suite to optimize against.
size: int = 4 + round(math.sqrt(frame_width * frame_height) / 192)
if size % 2 == 0:
size += 1
return size
def detect_edges(lum: np.ndarray) -> np.ndarray:
"""Detect edges using the luma channel of a frame.
Arguments:
lum: 2D 8-bit image representing the luma channel of a frame.
Returns:
2D 8-bit image of the same size as the input, where pixels with values of 255
represent edges, and all other pixels are 0.
"""
# Initialize kernel.
kernel_size = estimated_kernel_size(lum.shape[1], lum.shape[0])
kernel = np.ones((kernel_size, kernel_size), np.uint8)
# Estimate levels for thresholding.
# TODO(0.6.3): Add config file entries for sigma, aperture/kernel size, etc.
sigma: float = 1.0 / 3.0
median = np.median(lum)
low = int(max(0, (1.0 - sigma) * median))
high = int(min(255, (1.0 + sigma) * median))
# Calculate edges using Canny algorithm, and reduce noise by dilating the edges.
# This increases edge overlap leading to improved robustness against noise and slow
# camera movement. Note that very large kernel sizes can negatively affect accuracy.
edges = cv2.Canny(lum, low, high)
return cv2.dilate(edges, kernel)
def prepare_mask_coef_by_score(video_shape: list, cond_frame_idx: list, sim_range: list = [0.2, 1.0],
statistic: list = [1, 100], coef_max: int = 0.98, score: Optional[torch.Tensor] = None):
'''
the shape of video_data is (b f c h w)
cond_frame_idx is a list, with length of batch_size
the shape of statistic is (f 2)
the shape of score is (b f)
the shape of coef is (b f)
'''
assert len(video_shape) == 2, \
f'the shape of video_shape should be (b f c h w), but now get {len(video_shape.shape)} channels'
batch_size, frame_num = video_shape[0], video_shape[1]
score = score.permute(0, 2, 1).squeeze(0)
# list -> b 1
cond_fram_mat = torch.tensor(cond_frame_idx).unsqueeze(-1)
statistic = torch.tensor(statistic)
# (f 2) -> (b f 2)
statistic = statistic.repeat(batch_size, 1, 1)
# shape of order (b f), shape of cond_mat (b f)
order = torch.arange(0, frame_num, 1)
order = order.repeat(batch_size, 1)
cond_mat = torch.ones((batch_size, frame_num)) * cond_fram_mat
order = abs(order - cond_mat)
statistic = statistic[:,order.to(torch.long)][0,:,:,:]
# score (b f) max_s (b f 1)
max_stats = torch.max(statistic, dim=2).values.to(dtype=score.dtype)
min_stats = torch.min(statistic, dim=2).values.to(dtype=score.dtype)
score[score > max_stats] = max_stats[score > max_stats] * 0.95
score[score < min_stats] = min_stats[score < min_stats]
eps = 1e-10
coef = 1 - abs((score / (max_stats + eps)) * (max(sim_range) - min(sim_range)))
indices = torch.arange(coef.shape[0]).unsqueeze(1)
coef[indices, cond_fram_mat] = 1.0
return coef
def preprocess_img(img_path, max_size:int=512):
ori_image = Image.open(img_path).convert('RGB')
width, height = ori_image.size
long_edge = max(width, height)
if long_edge > max_size:
scale_factor = max_size / long_edge
else:
scale_factor = 1
width = int(width * scale_factor)
height = int(height * scale_factor)
ori_image = ori_image.resize((width, height))
if (width % 8 != 0) or (height % 8 != 0):
in_width = (width // 8) * 8
in_height = (height // 8) * 8
else:
in_width = width
in_height = height
in_image = ori_image
in_image = ori_image.resize((in_width, in_height))
# in_image = ori_image.resize((512, 512))
in_image_np = np.array(in_image)
return in_image_np, in_height, in_width |