|
from pydantic import BaseModel |
|
from llama_cpp import Llama |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
import re |
|
import asyncio |
|
import gradio as gr |
|
import os |
|
import spaces |
|
from dotenv import load_dotenv |
|
from fastapi import FastAPI, Request |
|
from fastapi.responses import JSONResponse |
|
import urllib3 |
|
import time |
|
import random |
|
|
|
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) |
|
|
|
app = FastAPI() |
|
|
|
load_dotenv() |
|
|
|
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") |
|
|
|
global_data = { |
|
'models': {}, |
|
'tokens': { |
|
'eos': 'eos_token', |
|
'pad': 'pad_token', |
|
'padding': 'padding_token', |
|
'unk': 'unk_token', |
|
'bos': 'bos_token', |
|
'sep': 'sep_token', |
|
'cls': 'cls_token', |
|
'mask': 'mask_token' |
|
} |
|
} |
|
|
|
model_configs = [ |
|
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"}, |
|
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"}, |
|
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"}, |
|
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"}, |
|
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"}, |
|
{"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"}, |
|
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"}, |
|
{"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"}, |
|
] |
|
|
|
class ModelManager: |
|
def __init__(self): |
|
self.models = {} |
|
|
|
def load_model(self, model_config): |
|
if model_config['name'] not in self.models: |
|
try: |
|
self.models[model_config['name']] = Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'], use_auth_token=HUGGINGFACE_TOKEN) |
|
except Exception as e: |
|
print(f"Error loading model {model_config['name']}: {e}") |
|
pass |
|
|
|
def load_all_models(self): |
|
with ThreadPoolExecutor() as executor: |
|
for config in model_configs: |
|
executor.submit(self.load_model, config) |
|
return self.models |
|
|
|
model_manager = ModelManager() |
|
global_data['models'] = model_manager.load_all_models() |
|
|
|
class ChatRequest(BaseModel): |
|
message: str |
|
|
|
def normalize_input(input_text): |
|
return input_text.strip() |
|
|
|
def remove_duplicates(text): |
|
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text) |
|
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text) |
|
text = text.replace('[/INST]', '') |
|
lines = text.split('\n') |
|
unique_lines = [] |
|
seen_lines = set() |
|
for line in lines: |
|
if line not in seen_lines: |
|
unique_lines.append(line) |
|
seen_lines.add(line) |
|
return '\n'.join(unique_lines) |
|
|
|
@spaces.GPU(queue=False, idle_timeout=0, timeout=0) |
|
def generate_model_response(model, inputs): |
|
try: |
|
response = model(inputs) |
|
return remove_duplicates(response['choices'][0]['text']) |
|
except Exception as e: |
|
if "You have exceeded your GPU quota" in str(e): |
|
time.sleep(random.uniform(1, 3)) |
|
try: |
|
response = model(inputs) |
|
return remove_duplicates(response['choices'][0]['text']) |
|
except Exception as e2: |
|
print(f"Error generating model response (after retry): {e2}") |
|
pass |
|
return "" |
|
else: |
|
print(f"Error generating model response: {e}") |
|
pass |
|
return "" |
|
|
|
def remove_repetitive_responses(responses): |
|
unique_responses = {} |
|
for response in responses: |
|
if response['model'] not in unique_responses: |
|
unique_responses[response['model']] = response['response'] |
|
return unique_responses |
|
|
|
async def process_message(message): |
|
inputs = normalize_input(message) |
|
with ThreadPoolExecutor() as executor: |
|
futures = [ |
|
executor.submit(generate_model_response, model, inputs) |
|
for model in global_data['models'].values() |
|
] |
|
responses = [{'model': model_name, 'response': future.result()} for model_name, future in zip(global_data['models'].keys(), as_completed(futures))] |
|
unique_responses = remove_repetitive_responses(responses) |
|
formatted_response = "" |
|
for model, response in unique_responses.items(): |
|
formatted_response += f"**{model}:**\n{response}\n\n" |
|
|
|
return formatted_response |
|
|
|
@app.post("/generate_multimodel") |
|
async def api_generate_multimodel(request: Request): |
|
while True: |
|
try: |
|
data = await request.json() |
|
message = data["message"] |
|
formatted_response = await process_message(message) |
|
return JSONResponse({"response": formatted_response}) |
|
except Exception as e: |
|
print(f"Error in API request handling: {e}") |
|
pass |
|
time.sleep(0) |
|
|
|
iface = gr.Interface( |
|
fn=process_message, |
|
inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."), |
|
outputs=gr.Markdown(), |
|
title="Multi-Model LLM API", |
|
description="Enter a message and get responses from multiple LLMs.", |
|
) |
|
|
|
if __name__ == "__main__": |
|
port = int(os.environ.get("PORT", 7860)) |
|
iface.launch(server_port=port) |