|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from llama_cpp import Llama |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
import uvicorn |
|
from dotenv import load_dotenv |
|
from difflib import SequenceMatcher |
|
from tqdm import tqdm |
|
|
|
load_dotenv() |
|
|
|
app = FastAPI() |
|
|
|
|
|
models = [ |
|
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf"}, |
|
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf"}, |
|
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf"}, |
|
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf"}, |
|
] |
|
|
|
|
|
llms = [Llama.from_pretrained(repo_id=model['repo_id'], filename=model['filename']) for model in models] |
|
print(f"Modelos cargados: {[model['repo_id'] for model in models]}") |
|
|
|
class ChatRequest(BaseModel): |
|
message: str |
|
top_k: int = 50 |
|
top_p: float = 0.95 |
|
temperature: float = 0.7 |
|
|
|
def generate_chat_response(request, llm): |
|
try: |
|
|
|
user_input = normalize_input(request.message) |
|
response = llm.create_chat_completion( |
|
messages=[{"role": "user", "content": user_input}], |
|
top_k=request.top_k, |
|
top_p=request.top_p, |
|
temperature=request.temperature |
|
) |
|
reply = response['choices'][0]['message']['content'] |
|
return {"response": reply, "literal": user_input} |
|
except Exception as e: |
|
return {"response": f"Error: {str(e)}", "literal": user_input} |
|
|
|
def normalize_input(input_text): |
|
|
|
return input_text.strip() |
|
|
|
def select_best_response(responses, request): |
|
coherent_responses = filter_by_coherence([resp['response'] for resp in responses], request) |
|
best_response = filter_by_similarity(coherent_responses) |
|
return best_response |
|
|
|
def filter_by_coherence(responses, request): |
|
|
|
return responses |
|
|
|
def filter_by_similarity(responses): |
|
responses.sort(key=len, reverse=True) |
|
best_response = responses[0] |
|
for i in range(1, len(responses)): |
|
ratio = SequenceMatcher(None, best_response, responses[i]).ratio() |
|
if ratio < 0.9: |
|
best_response = responses[i] |
|
break |
|
return best_response |
|
|
|
@app.post("/generate_chat") |
|
async def generate_chat(request: ChatRequest): |
|
if not request.message.strip(): |
|
raise HTTPException(status_code=400, detail="The message cannot be empty.") |
|
|
|
print(f"Procesando solicitud: {request.message}") |
|
|
|
|
|
with ThreadPoolExecutor(max_workers=None) as executor: |
|
|
|
futures = [executor.submit(generate_chat_response, request, llm) for llm in llms] |
|
responses = [] |
|
|
|
for future in tqdm(as_completed(futures), total=len(futures), desc="Generando respuestas"): |
|
response = future.result() |
|
responses.append(response) |
|
print(f"Modelo procesado: {response['literal'][:30]}...") |
|
|
|
|
|
if any("Error" in response['response'] for response in responses): |
|
error_response = next(response for response in responses if "Error" in response['response']) |
|
raise HTTPException(status_code=500, detail=error_response['response']) |
|
|
|
best_response = select_best_response([resp['response'] for resp in responses], request) |
|
|
|
print(f"Mejor respuesta seleccionada: {best_response}") |
|
|
|
return { |
|
"best_response": best_response, |
|
"all_responses": [resp['response'] for resp in responses], |
|
"literal_inputs": [resp['literal'] for resp in responses] |
|
} |
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|