File size: 8,942 Bytes
e3a7b6f a17dc9a e3a7b6f d6a8693 43c97db e3a7b6f d6a8693 e3a7b6f d6a8693 e3a7b6f d6a8693 e3a7b6f a17dc9a aec004b 854cd73 e3a7b6f d6a8693 43c97db d6a8693 aec004b d6a8693 43c97db d6a8693 e9fd885 d6a8693 aec004b d6a8693 43c97db d6a8693 43c97db d6a8693 43c97db d6a8693 43c97db d6a8693 e3a7b6f d6a8693 43c97db aec004b e3a7b6f aec004b e3a7b6f aec004b e3a7b6f aec004b e3a7b6f d6a8693 1608585 aec004b d6a8693 aec004b 1608585 e3a7b6f 6fc515c d6a8693 aec004b d6a8693 e3a7b6f d6a8693 e3a7b6f d6a8693 e3a7b6f aec004b a17dc9a 5e2b717 e3a7b6f e6dda1e d6a8693 a17dc9a e9fd885 aec004b 95ed60f aec004b 95ed60f e3a7b6f a17dc9a e3a7b6f a17dc9a e3a7b6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor, as_completed
from tqdm import tqdm
import uvicorn
from dotenv import load_dotenv
from difflib import SequenceMatcher
import re
import spaces # Importar la librer铆a spaces
# Cargar variables de entorno
load_dotenv()
# Inicializar aplicaci贸n FastAPI
app = FastAPI()
# Diccionario global para almacenar los modelos
global_data = {
'models': []
}
# Configuraci贸n de los modelos
model_configs = [
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf", "name": "Meta Llama 3.1-70B"},
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
{"repo_id": "Ffftdtd5dtft/Hermes-3-Llama-3.1-8B-IQ1_S-GGUF", "filename": "hermes-3-llama-3.1-8b-iq1_s-imat.gguf", "name": "Hermes 3 Llama 3.1-8B"},
{"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf", "name": "Phi 3.5 Mini Instruct"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"},
{"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"},
{"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"},
{"repo_id": "Ffftdtd5dtft/Mistral-NeMo-Minitron-8B-Base-IQ1_S-GGUF", "filename": "mistral-nemo-minitron-8b-base-iq1_s-imat.gguf", "name": "Mistral NeMo Minitron 8B Base"},
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"}
]
# Clase para gestionar modelos
class ModelManager:
def __init__(self):
self.models = []
self.loaded = False # Para verificar si ya est谩n cargados
def load_model(self, model_config):
print(f"Cargando modelo: {model_config['name']}...")
return {"model": Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']), "name": model_config['name']}
def load_all_models(self):
if self.loaded: # Si los modelos ya est谩n cargados, no los vuelve a cargar
print("Modelos ya est谩n cargados. No es necesario volver a cargarlos.")
return self.models
print("Iniciando carga de modelos...")
with ThreadPoolExecutor() as executor: # No hay l铆mite de trabajadores
futures = [executor.submit(self.load_model, config) for config in model_configs]
models = []
for future in tqdm(as_completed(futures), total=len(model_configs), desc="Cargando modelos", unit="modelo"):
try:
model = future.result()
models.append(model)
print(f"Modelo cargado exitosamente: {model['name']}")
except Exception as e:
print(f"Error al cargar el modelo: {e}")
self.models = models
self.loaded = True # Marcar como cargados
print("Todos los modelos han sido cargados.")
return self.models
# Instanciar ModelManager
model_manager = ModelManager()
# Cargar modelos al iniciar la aplicaci贸n, solo la primera vez
global_data['models'] = model_manager.load_all_models()
# Modelo global para la solicitud de chat
class ChatRequest(BaseModel):
message: str
top_k: int = 50
top_p: float = 0.95
temperature: float = 0.7
# Funci贸n para generar respuestas de chat
@spaces.GPU(duration=0) # Anotaci贸n para usar GPU con duraci贸n 0
def generate_chat_response(request, model_data):
try:
user_input = normalize_input(request.message)
llm = model_data['model']
response = llm.create_chat_completion(
messages=[{"role": "user", "content": user_input}],
top_k=request.top_k,
top_p=request.top_p,
temperature=request.temperature
)
reply = response['choices'][0]['message']['content']
return {"response": reply, "literal": user_input, "model_name": model_data['name']}
except Exception as e:
return {"response": f"Error: {str(e)}", "literal": user_input, "model_name": model_data['name']}
def normalize_input(input_text):
return input_text.strip()
def remove_duplicates(text):
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text)
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text)
text = text.replace('[/INST]', '')
lines = text.split('\n')
unique_lines = list(dict.fromkeys(lines))
return '\n'.join(unique_lines).strip()
def remove_repetitive_responses(responses):
seen = set()
unique_responses = []
for response in responses:
normalized_response = remove_duplicates(response['response'])
if normalized_response not in seen:
seen.add(normalized_response)
unique_responses.append(response)
return unique_responses
def select_best_response(responses):
print("Filtrando respuestas...")
responses = remove_repetitive_responses(responses)
responses = [remove_duplicates(response['response']) for response in responses]
unique_responses = list(set(responses))
coherent_responses = filter_by_coherence(unique_responses)
best_response = filter_by_similarity(coherent_responses)
return best_response
def filter_by_coherence(responses):
print("Ordenando respuestas por coherencia...")
responses.sort(key=len, reverse=True)
return responses
def filter_by_similarity(responses):
print("Filtrando respuestas por similitud...")
responses.sort(key=len, reverse=True)
best_response = responses[0]
for i in range(1, len(responses)):
ratio = SequenceMatcher(None, best_response, responses[i]).ratio()
if ratio < 0.9:
best_response = responses[i]
break
return best_response
def worker_function(model_data, request):
print(f"Generando respuesta con el modelo: {model_data['name']}...")
response = generate_chat_response(request, model_data)
return response
@app.post("/generate_chat")
async def generate_chat(request: ChatRequest):
if not request.message.strip():
raise HTTPException(status_code=400, detail="The message cannot be empty.")
print(f"Procesando solicitud: {request.message}")
responses = []
num_models = len(global_data['models'])
with ThreadPoolExecutor() as executor: # No se establece l铆mite de concurrencia
futures = [executor.submit(worker_function, model_data, request) for model_data in global_data['models']]
for future in tqdm(as_completed(futures), total=num_models, desc="Generando respuestas", unit="modelo"):
try:
response = future.result()
responses.append(response)
except Exception as exc:
print(f"Error en la generaci贸n de respuesta: {exc}")
best_response = select_best_response(responses)
print(f"Mejor respuesta seleccionada: {best_response}")
return {
"best_response": best_response,
"all_responses": responses
}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
|