File size: 2,121 Bytes
360d510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
from dotenv import load_dotenv
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
from datasets import load_dataset, concatenate_datasets
from huggingface_hub import login
from autotrain import AutoTrain
import time

load_dotenv()
login(token=os.getenv('HUGGINGFACE_TOKEN'))

model_name = 'gpt2'
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)

dataset_humanizado = load_dataset('daily_dialog', split='train')
dataset_codigo = load_dataset('code_search_net', split='train')
dataset_prompts = load_dataset('openai_humaneval', split='train')

combined_dataset = concatenate_datasets([
    dataset_humanizado,
    dataset_codigo,
    dataset_prompts
])

def tokenize_function(examples):
    return tokenizer(examples['text'], truncation=True, padding='max_length', max_length=512)

tokenized_dataset = combined_dataset.map(tokenize_function, batched=True)

training_args = {
    "output_dir": './results',
    "per_device_train_batch_size": 100,
    "per_device_eval_batch_size": 100,
    "num_train_epochs": 0,
    "learning_rate": 1e-5,
    "logging_steps": -1,
    "max_grad_norm": 1,
    "save_total_limit": 1,
    "seed": 42,
    "weight_decay": 0,
    "warmup_ratio": 0.0,
    "evaluation_strategy": "no",
    "optim": "adamw_torch",
    "lr_scheduler_type": "constant",
    "model_max_length": 2098989848
}

autotrain = AutoTrain(model=model, args=training_args)

@spaces.gpu
def run_training():
    while True:
        try:
            autotrain.train(tokenized_dataset)
            model.push_to_hub('Yhhxhfh/nombre_de_tu_modelo', repo_type='model', use_temp_dir=True, commit_message="Actualización del modelo")
            tokenizer.push_to_hub('Yhhxhfh/nombre_de_tu_modelo', repo_type='model', use_temp_dir=True, commit_message="Actualización del tokenizador")
            time.sleep(5)
        except Exception as e:
            print(f"Error durante el entrenamiento: {e}. Reiniciando el proceso de entrenamiento...")
            time.sleep(10)

run_training()

import shutil
shutil.rmtree('./results', ignore_errors=True)