Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,10 @@ import torchvision.transforms as T
|
|
4 |
from PIL import Image
|
5 |
from module import myModule
|
6 |
|
|
|
|
|
|
|
|
|
7 |
IMG_SIZE = (224, 224)
|
8 |
STATS = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
9 |
# Define the transformation for the input image
|
@@ -66,5 +70,6 @@ if img is not None:
|
|
66 |
# Make predictions when the user clicks the "Predict" button
|
67 |
if st.button("Predict"):
|
68 |
values, indices = predict(img)
|
|
|
69 |
# Display the top 3 predictions as a bar chart
|
70 |
-
st.bar_chart({label: prob for label, prob in zip(
|
|
|
4 |
from PIL import Image
|
5 |
from module import myModule
|
6 |
|
7 |
+
CLASS_TO_IDX = ['AMMAN', 'AYYAPPA', 'BHAIRAV', 'BRAHMA', 'BUDDHA', 'DURGA', 'GANESHA', 'HANUMAN', 'KAALI',
|
8 |
+
'KRISHNA', 'KURMA', 'LAKSHMI', 'LINGA', 'MATSYA', 'MURUGA', 'NARASIMHA', 'NATARAJA', 'PARASURAMA',
|
9 |
+
'RAMA', 'SARASWATI', 'SHIVA', 'THIRTHANKARA', 'VAMANA', 'VARAHA', 'VISHNU']
|
10 |
+
|
11 |
IMG_SIZE = (224, 224)
|
12 |
STATS = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
13 |
# Define the transformation for the input image
|
|
|
70 |
# Make predictions when the user clicks the "Predict" button
|
71 |
if st.button("Predict"):
|
72 |
values, indices = predict(img)
|
73 |
+
classes = [CLASS_TO_IDX[index] for index in indices]
|
74 |
# Display the top 3 predictions as a bar chart
|
75 |
+
st.bar_chart({label: prob for label, prob in zip(classes, values)}, color="#FFC101")
|