File size: 9,338 Bytes
c209d46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import math
import torch
import torchvision.transforms as T
from os import path
from torch.utils.data import DataLoader, WeightedRandomSampler
from torch.optim import AdamW
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.nn import CrossEntropyLoss
from torchmetrics.functional import accuracy
from timm import create_model, list_models
from timm.models.vision_transformer import VisionTransformer
from torchvision.datasets import ImageFolder

from utils import AverageMeter
from lightning import LightningDataModule, LightningModule
from huggingface_hub import PyTorchModelHubMixin, login
import torch.nn as nn
from lora import LoRA_qkv


PRE_SIZE = (256, 256)
IMG_SIZE = (224, 224)

STATS = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
DATASET_DIRECTORY = path.join(path.dirname(__file__), "datasets")
CHECKPOINT_DIRECTORY = path.join(path.dirname(__file__), "checkpoints")

TRANSFORMS = {
    "train": T.Compose([
        T.Resize(PRE_SIZE),
        T.RandomCrop(IMG_SIZE),
        T.ToTensor(),
        T.Normalize(**STATS)
    ]),
    "val": T.Compose([
        T.Resize(PRE_SIZE),
        T.CenterCrop(IMG_SIZE),
        T.ToTensor(),
        T.Normalize(**STATS)
    ])
}



class myDataModule(LightningDataModule):
    """
    Lightning DataModule for loading and preparing the image dataset.

    Args:
        ds_name (str): Name of the dataset directory.
        batch_size (int): Batch size for data loaders.
        num_workers (int): Number of workers for data loaders.
    """
    def __init__(self, ds_name: str = "deities", batch_size: int = 32, num_workers: int = 8):
        super(myDataModule, self).__init__()

        self.ds_path = path.join(DATASET_DIRECTORY, ds_name)
        assert path.exists(self.ds_path), f"Dataset {ds_name} not found in {DATASET_DIRECTORY}."

        self.ds_name = ds_name
        self.batch_size = batch_size
        self.num_workers = num_workers


    def setup(self, stage=None):
        if stage == "fit" or stage is None:
            self.train_ds = ImageFolder(root=path.join(self.ds_path, 'train'), transform=TRANSFORMS['train'])
            self.val_ds = ImageFolder(root=path.join(self.ds_path, 'val'), transform=TRANSFORMS['val'])
            # Number of classes
            self.num_classes = len(self.train_ds.classes)          
    

    def train_dataloader(self) -> DataLoader:
        # Weighted Random sampler for imbalanced dataset
        class_samples = [0] * self.num_classes
        for _, (_, label) in enumerate(self.train_ds):
            class_samples[label] += 1
        weights = [1.0 / class_samples[label] for _, label in self.train_ds]
        self.sampler = WeightedRandomSampler(weights, len(weights), replacement=True)
        return DataLoader(dataset=self.train_ds, batch_size=self.batch_size, 
                          sampler=self.sampler, num_workers=self.num_workers, persistent_workers=True)


    def val_dataloader(self) -> DataLoader:
        return DataLoader(dataset=self.val_ds, batch_size=self.batch_size, 
                          shuffle=False, num_workers=self.num_workers, persistent_workers=True)
    



class myModule(LightningModule, PyTorchModelHubMixin):
    """
    Lightning Module for training and evaluating the Image classification model.

    Args:
        model_name (str): Name of the Vision Transformer model.
        num_classes (int): Number of classes in the dataset.
        freeze_flag (bool): Flag to freeze the base model parameters.
        use_lora (bool): Flag to use LoRA (Local Rank Adaptation) for fine-tuning.
        rank (int): Rank for LoRA if use_lora is True.
        learning_rate (float): Learning rate for the optimizer.
        weight_decay (float): Weight decay for the optimizer.
        push_to_hf (bool): Flag to push model to Huggingface Hub.
        commit_message (str): Commit message
        repo_id (str): Huggingface repo id
    """
    def __init__(self, 
                 model_name: str = "vit_tiny_patch16_224", 
                 num_classes: int = 25,
                 freeze_flag: bool = True,
                 use_lora: bool = False, 
                 rank: int = None, 
                 learning_rate: float = 3e-4, 
                 weight_decay: float = 2e-5,
                 push_to_hf: bool = True,
                 commit_message: str = "my model",
                 repo_id: str = "Yegiiii/ideityfy"
        ):
    
        super(myModule, self).__init__()
        self.save_hyperparameters()
        self.model_name = model_name
        self.num_classes = num_classes
        self.freeze_flag = freeze_flag
        self.rank = rank
        self.use_lora = use_lora
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.push_to_hf = push_to_hf
        self.commit_message = commit_message
        self.repo_id = repo_id
        
        assert model_name in list_models(), f"Timm model name {model_name} not available."
        timm_model = create_model(model_name, pretrained=True)
        assert isinstance(timm_model, VisionTransformer), f"{model_name} not a Vision Transformer."
        self.model = timm_model

        if freeze_flag:
            # Freeze the Timm model parameters
            self.freeze()

        if use_lora:
            # Add LoRA matrices to the Timm model
            assert freeze_flag, "Set freeze_flag to True for using LoRA fine-tuning."
            assert rank, "Rank can't be None."
            # self.model = LoRA_VisionTransformer(self.model, rank)
            self.add_lora()

        self.model.reset_classifier(num_classes)

        # Loss function
        self.criterion = CrossEntropyLoss()

        # Validation metrics
        self.top1_acc = AverageMeter()
        self.top3_acc = AverageMeter()
        self.top5_acc = AverageMeter()


    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.model(x)
    
    
    def on_fit_start(self) -> None:
        num_classes = self.trainer.datamodule.num_classes
        assert num_classes == self.num_classes, \
        f"Number of classes provided in the argument ({self.num_classes}) is not matching \
         the number of classes in the dataset ({num_classes})."


    def on_fit_end(self) -> None:
        if self.push_to_hf:
            login()
            self.push_to_hub(repo_id=self.repo_id, commit_message=self.commit_message)


    def configure_optimizers(self):
        optimizer = AdamW(params=filter(lambda param: param.requires_grad, self.model.parameters()), 
                          lr=self.learning_rate, weight_decay=self.weight_decay)
        
        scheduler = CosineAnnealingLR(optimizer, self.trainer.max_epochs, 1e-6)
        return ([optimizer], [scheduler])


    def shared_step(self, x: torch.Tensor, y: torch.Tensor):
        logits = self(x)
        loss = self.criterion(logits, y)   
        return logits, loss 


    def training_step(self, batch, batch_idx) -> torch.Tensor:
        x, y = batch
        _, loss = self.shared_step(x, y)

        self.log("train_loss", loss, prog_bar=True, logger=True, on_epoch=True)
        return loss


    def validation_step(self, batch, batch_idx) -> dict:
        x, y = batch
        logits, loss = self.shared_step(x, y)

        self.top1_acc(
            val=accuracy(logits, y, average="weighted", top_k=1, num_classes=self.num_classes))
        self.top3_acc(
            val=accuracy(logits, y, average="weighted", top_k=3, num_classes=self.num_classes))
        self.top5_acc(
            val=accuracy(logits, y, average="weighted", top_k=5, num_classes=self.num_classes))

        metric_dict = {
            "val_loss": loss, 
            "top1_acc": self.top1_acc.avg, 
            "top3_acc": self.top3_acc.avg, 
            "top5_acc": self.top5_acc.avg
        }
        
        self.log_dict(metric_dict, prog_bar=True, logger=True, on_epoch=True)
        return  metric_dict

    
    def on_validation_epoch_end(self) -> None:
        self.top1_acc.reset()
        self.top3_acc.reset()
        self.top5_acc.reset()


    def add_lora(self):
        self.w_As = []
        self.w_Bs = []

        for _, blk in enumerate(self.model.blocks):
            w_qkv_linear = blk.attn.qkv
            self.dim = w_qkv_linear.in_features
            lora_a_linear_q = nn.Linear(self.dim, self.rank, bias=False)
            lora_b_linear_q = nn.Linear(self.rank, self.dim, bias=False)
            lora_a_linear_v = nn.Linear(self.dim, self.rank, bias=False)
            lora_b_linear_v = nn.Linear(self.rank, self.dim, bias=False)
            self.w_As.append(lora_a_linear_q)
            self.w_Bs.append(lora_b_linear_q)
            self.w_As.append(lora_a_linear_v)
            self.w_Bs.append(lora_b_linear_v)
            blk.attn.qkv = LoRA_qkv(w_qkv_linear, lora_a_linear_q, 
                                    lora_b_linear_q, lora_a_linear_v, lora_b_linear_v)

        for w_A in self.w_As:
            nn.init.kaiming_uniform_(w_A.weight, a=math.sqrt(5))
        for w_B in self.w_Bs:
            nn.init.zeros_(w_B.weight)



if __name__ == "__main__":
    # from torchinfo import summary
    
    # module = myModule(freeze_flag=False)
    # summary(module, (1, 3, 224, 224))

    from datasets import load_dataset

    dataset = load_dataset("Yegiiii/deities")
    print(dataset)