File size: 4,890 Bytes
79186fd
 
cf229a5
 
79186fd
c9aa76d
79186fd
ecf9cdb
79186fd
d9961a5
d5b26cf
 
79186fd
 
9c8d7cc
af50430
 
 
 
 
79186fd
d9961a5
d5b26cf
 
af50430
 
 
 
d9961a5
dbcbeb2
cf229a5
dd9a62d
 
 
 
 
cf229a5
 
 
af50430
cf229a5
 
 
 
 
 
850df56
 
 
 
af50430
cf229a5
7aa7dac
cf229a5
d5b26cf
dbcbeb2
d5b26cf
dd9a62d
 
 
 
 
d5b26cf
 
 
6330f37
d5b26cf
 
 
 
 
 
850df56
 
 
 
d5b26cf
6330f37
d5b26cf
6330f37
d5b26cf
7aa7dac
 
d5b26cf
 
 
 
79186fd
c9aa76d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79186fd
c9aa76d
9c8d7cc
 
 
 
5e1e881
9c8d7cc
 
 
5e1e881
9c8d7cc
 
 
 
5e1e881
9c8d7cc
5e1e881
9c8d7cc
5e1e881
9c8d7cc
5e1e881
9c8d7cc
 
7aa7dac
9c8d7cc
779c082
79186fd
9c8d7cc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
from huggingface_hub import InferenceClient
import torch
from transformers import pipeline

# Inference client setup
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
pipe = pipeline("text-generation", "microsoft/Phi-3-mini-4k-instruct", torch_dtype=torch.bfloat16, device_map="auto")

# Global flag to handle cancellation
stop_inference = False

def respond(
    message,
    history: list[tuple[str, str]],
    system_message="You are a friendly Chatbot.",
    max_tokens=512,
    temperature=0.7,
    top_p=0.95,
    use_local_model=False,
):
    global stop_inference
    stop_inference = False  # Reset cancellation flag

    # Initialize history if it's None
    if history is None:
        history = []

    if use_local_model:
        # local inference 
        messages = [{"role": "system", "content": system_message}]
        for val in history:
            if val[0]:
                messages.append({"role": "user", "content": val[0]})
            if val[1]:
                messages.append({"role": "assistant", "content": val[1]})
        messages.append({"role": "user", "content": message})

        response = ""
        for output in pipe(
            messages,
            max_new_tokens=max_tokens,
            temperature=temperature,
            do_sample=True,
            top_p=top_p,
        ):
            if stop_inference:
                response = "Inference cancelled."
                yield history + [(message, response)]
                return
            token = output['generated_text'][-1]['content']
            response += token
            yield history + [(message, response)]  # Yield history + new response

    else:
        # API-based inference 
        messages = [{"role": "system", "content": system_message}]
        for val in history:
            if val[0]:
                messages.append({"role": "user", "content": val[0]})
            if val[1]:
                messages.append({"role": "assistant", "content": val[1]})
        messages.append({"role": "user", "content": message})

        response = ""
        for message_chunk in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            if stop_inference:
                response = "Inference cancelled."
                yield history + [(message, response)]
                return
            if stop_inference:
                response = "Inference cancelled."
                break
            token = message_chunk.choices[0].delta.content
            response += token
            yield history + [(message, response)]  # Yield history + new response


def cancel_inference():
    global stop_inference
    stop_inference = True

# Custom CSS for a fancy look
custom_css = """
#main-container {
    background-color: #f0f0f0;
    font-family: 'Arial', sans-serif;
}

.gradio-container {
    max-width: 700px;
    margin: 0 auto;
    padding: 20px;
    background: white;
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
    border-radius: 10px;
}

.gr-button {
    background-color: #4CAF50;
    color: white;
    border: none;
    border-radius: 5px;
    padding: 10px 20px;
    cursor: pointer;
    transition: background-color 0.3s ease;
}

.gr-button:hover {
    background-color: #45a049;
}

.gr-slider input {
    color: #4CAF50;
}

.gr-chat {
    font-size: 16px;
}

#title {
    text-align: center;
    font-size: 2em;
    margin-bottom: 20px;
    color: #333;
}
"""

# Define the interface
with gr.Blocks(css=custom_css) as demo:
    gr.Markdown("<h1 style='text-align: center;'>🌟 Fancy AI Chatbot 🌟</h1>")
    gr.Markdown("Interact with the AI chatbot using customizable settings below.")

    with gr.Row():
        system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message", interactive=True)
        use_local_model = gr.Checkbox(label="Use Local Model", value=False)

    with gr.Row():
        max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
        temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
        top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")

    chat_history = gr.Chatbot(label="Chat")

    user_input = gr.Textbox(show_label=False, placeholder="Type your message here...")

    cancel_button = gr.Button("Cancel Inference", variant="danger")

    # Adjusted to ensure history is maintained and passed correctly
    user_input.submit(respond, [user_input, chat_history, system_message, max_tokens, temperature, top_p, use_local_model], chat_history)

    cancel_button.click(cancel_inference)

if __name__ == "__main__":
    demo.launch(share=False)  # Remove share=True because it's not supported on HF Spaces