XzJosh's picture
Upload 4 files
f3c2271 verified
import os,re,logging
logging.getLogger("markdown_it").setLevel(logging.ERROR)
logging.getLogger("urllib3").setLevel(logging.ERROR)
logging.getLogger("httpcore").setLevel(logging.ERROR)
logging.getLogger("httpx").setLevel(logging.ERROR)
logging.getLogger("asyncio").setLevel(logging.ERROR)
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
import pdb
gpt_path = os.environ.get(
"gpt_path", "models/maimai/maimai-e21.ckpt"
)
sovits_path = os.environ.get("sovits_path", "models/maimai/maimai_e55_s1210.pth")
cnhubert_base_path = os.environ.get(
"cnhubert_base_path", "pretrained_models/chinese-hubert-base"
)
bert_path = os.environ.get(
"bert_path", "pretrained_models/chinese-roberta-wwm-ext-large"
)
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
infer_ttswebui = int(infer_ttswebui)
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
is_half = eval(os.environ.get("is_half", "True"))
import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
import librosa,torch
from feature_extractor import cnhubert
cnhubert.cnhubert_base_path=cnhubert_base_path
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
import nltk
nltk.download('cmudict')
from module.models import SynthesizerTrn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from time import time as ttime
from module.mel_processing import spectrogram_torch
from my_utils import load_audio
device = "cuda" if torch.cuda.is_available() else "cpu"
is_half = eval(
os.environ.get("is_half", "True" if torch.cuda.is_available() else "False")
)
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
if is_half == True:
bert_model = bert_model.half().to(device)
else:
bert_model = bert_model.to(device)
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
ssl_model = cnhubert.get_model()
if is_half == True:
ssl_model = ssl_model.half().to(device)
else:
ssl_model = ssl_model.to(device)
def change_sovits_weights(sovits_path):
global vq_model,hps
dict_s2=torch.load(sovits_path,map_location="cpu")
hps=dict_s2["config"]
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate = "25hz"
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model
)
if("pretrained"not in sovits_path):
del vq_model.enc_q
if is_half == True:
vq_model = vq_model.half().to(device)
else:
vq_model = vq_model.to(device)
vq_model.eval()
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
change_sovits_weights(sovits_path)
def change_gpt_weights(gpt_path):
global hz,max_sec,t2s_model,config
hz = 50
dict_s1 = torch.load(gpt_path, map_location="cpu")
config = dict_s1["config"]
max_sec = config["data"]["max_sec"]
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if is_half == True:
t2s_model = t2s_model.half()
t2s_model = t2s_model.to(device)
t2s_model.eval()
total = sum([param.nelement() for param in t2s_model.parameters()])
print("Number of parameter: %.2fM" % (total / 1e6))
change_gpt_weights(gpt_path)
def get_spepc(hps, filename):
audio = load_audio(filename, int(hps.data.sampling_rate))
audio = torch.FloatTensor(audio)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(
audio_norm,
hps.data.filter_length,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
center=False,
)
return spec
dict_language={
("中文"):"zh",
("英文"):"en",
("日文"):"ja"
}
def splite_en_inf(sentence, language):
pattern = re.compile(r'[a-zA-Z. ]+')
textlist = []
langlist = []
pos = 0
for match in pattern.finditer(sentence):
start, end = match.span()
if start > pos:
textlist.append(sentence[pos:start])
langlist.append(language)
textlist.append(sentence[start:end])
langlist.append("en")
pos = end
if pos < len(sentence):
textlist.append(sentence[pos:])
langlist.append(language)
return textlist, langlist
def clean_text_inf(text, language):
phones, word2ph, norm_text = clean_text(text, language)
phones = cleaned_text_to_sequence(phones)
return phones, word2ph, norm_text
def get_bert_inf(phones, word2ph, norm_text, language):
if language == "zh":
bert = get_bert_feature(norm_text, word2ph).to(device)
else:
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
return bert
def nonen_clean_text_inf(text, language):
textlist, langlist = splite_en_inf(text, language)
phones_list = []
word2ph_list = []
norm_text_list = []
for i in range(len(textlist)):
lang = langlist[i]
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
phones_list.append(phones)
if lang == "en" or "ja":
pass
else:
word2ph_list.append(word2ph)
norm_text_list.append(norm_text)
print(word2ph_list)
phones = sum(phones_list, [])
word2ph = sum(word2ph_list, [])
norm_text = ' '.join(norm_text_list)
return phones, word2ph, norm_text
def nonen_get_bert_inf(text, language):
textlist, langlist = splite_en_inf(text, language)
print(textlist)
print(langlist)
bert_list = []
for i in range(len(textlist)):
text = textlist[i]
lang = langlist[i]
phones, word2ph, norm_text = clean_text_inf(text, lang)
bert = get_bert_inf(phones, word2ph, norm_text, lang)
bert_list.append(bert)
bert = torch.cat(bert_list, dim=1)
return bert
def get_tts_wav(selected_text, prompt_text, prompt_language, text, text_language,how_to_cut=("不切")):
ref_wav_path = text_to_audio_mappings.get(selected_text, "")
if not ref_wav_path:
print("Audio file not found for the selected text.")
return
t0 = ttime()
prompt_text = prompt_text.strip("\n")
prompt_language, text = prompt_language, text.strip("\n")
zero_wav = np.zeros(
int(hps.data.sampling_rate * 0.3),
dtype=np.float16 if is_half == True else np.float32,
)
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
wav16k = torch.from_numpy(wav16k)
zero_wav_torch = torch.from_numpy(zero_wav)
if is_half == True:
wav16k = wav16k.half().to(device)
zero_wav_torch = zero_wav_torch.half().to(device)
else:
wav16k = wav16k.to(device)
zero_wav_torch = zero_wav_torch.to(device)
wav16k=torch.cat([wav16k,zero_wav_torch])
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
"last_hidden_state"
].transpose(
1, 2
) # .float()
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
t1 = ttime()
prompt_language = dict_language[prompt_language]
text_language = dict_language[text_language]
if prompt_language == "en":
phones1, word2ph1, norm_text1 = clean_text_inf(prompt_text, prompt_language)
else:
phones1, word2ph1, norm_text1 = nonen_clean_text_inf(prompt_text, prompt_language)
if(how_to_cut==("凑五句一切")):text=cut1(text)
elif(how_to_cut==("凑50字一切")):text=cut2(text)
elif(how_to_cut==("按中文句号。切")):text=cut3(text)
elif(how_to_cut==("按英文句号.切")):text=cut4(text)
text = text.replace("\n\n","\n").replace("\n\n","\n").replace("\n\n","\n")
if(text[-1]not in splits):text+="。"if text_language!="en"else "."
texts=text.split("\n")
audio_opt = []
if prompt_language == "en":
bert1 = get_bert_inf(phones1, word2ph1, norm_text1, prompt_language)
else:
bert1 = nonen_get_bert_inf(prompt_text, prompt_language)
for text in texts:
# 解决输入目标文本的空行导致报错的问题
if (len(text.strip()) == 0):
continue
if text_language == "en":
phones2, word2ph2, norm_text2 = clean_text_inf(text, text_language)
else:
phones2, word2ph2, norm_text2 = nonen_clean_text_inf(text, text_language)
if text_language == "en":
bert2 = get_bert_inf(phones2, word2ph2, norm_text2, text_language)
else:
bert2 = nonen_get_bert_inf(text, text_language)
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
prompt = prompt_semantic.unsqueeze(0).to(device)
t2 = ttime()
with torch.no_grad():
# pred_semantic = t2s_model.model.infer(
pred_semantic, idx = t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_len,
prompt,
bert,
# prompt_phone_len=ph_offset,
top_k=config["inference"]["top_k"],
early_stop_num=hz * max_sec,
)
t3 = ttime()
# print(pred_semantic.shape,idx)
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
0
) # .unsqueeze(0)#mq要多unsqueeze一次
refer = get_spepc(hps, ref_wav_path) # .to(device)
if is_half == True:
refer = refer.half().to(device)
else:
refer = refer.to(device)
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
audio = (
vq_model.decode(
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
)
.detach()
.cpu()
.numpy()[0, 0]
) ###试试重建不带上prompt部分
audio_opt.append(audio)
audio_opt.append(zero_wav)
t4 = ttime()
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
np.int16
)
splits = {
",",
"。",
"?",
"!",
",",
".",
"?",
"!",
"~",
":",
":",
"—",
"…",
} # 不考虑省略号
def split(todo_text):
todo_text = todo_text.replace("……", "。").replace("——", ",")
if todo_text[-1] not in splits:
todo_text += "。"
i_split_head = i_split_tail = 0
len_text = len(todo_text)
todo_texts = []
while 1:
if i_split_head >= len_text:
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
if todo_text[i_split_head] in splits:
i_split_head += 1
todo_texts.append(todo_text[i_split_tail:i_split_head])
i_split_tail = i_split_head
else:
i_split_head += 1
return todo_texts
def cut1(inp):
inp = inp.strip("\n")
inps = split(inp)
split_idx = list(range(0, len(inps), 5))
split_idx[-1] = None
if len(split_idx) > 1:
opts = []
for idx in range(len(split_idx) - 1):
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
else:
opts = [inp]
return "\n".join(opts)
def cut2(inp):
inp = inp.strip("\n")
inps = split(inp)
if len(inps) < 2:
return [inp]
opts = []
summ = 0
tmp_str = ""
for i in range(len(inps)):
summ += len(inps[i])
tmp_str += inps[i]
if summ > 50:
summ = 0
opts.append(tmp_str)
tmp_str = ""
if tmp_str != "":
opts.append(tmp_str)
if len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
opts[-2] = opts[-2] + opts[-1]
opts = opts[:-1]
return "\n".join(opts)
def cut3(inp):
inp = inp.strip("\n")
return "\n".join(["%s。" % item for item in inp.strip("。").split("。")])
def cut4(inp):
inp = inp.strip("\n")
return "\n".join(["%s." % item for item in inp.strip(".").split(".")])
def scan_audio_files(folder_path):
""" 扫描指定文件夹获取音频文件列表 """
return [f for f in os.listdir(folder_path) if f.endswith('.wav')]
def load_audio_text_mappings(folder_path, list_file_name):
text_to_audio_mappings = {}
audio_to_text_mappings = {}
with open(os.path.join(folder_path, list_file_name), 'r', encoding='utf-8') as file:
for line in file:
parts = line.strip().split('|')
if len(parts) >= 4:
audio_file_name = parts[0]
text = parts[3]
audio_file_path = os.path.join(folder_path, audio_file_name)
text_to_audio_mappings[text] = audio_file_path
audio_to_text_mappings[audio_file_path] = text
return text_to_audio_mappings, audio_to_text_mappings
audio_folder_path = 'audio/maimai'
text_to_audio_mappings, audio_to_text_mappings = load_audio_text_mappings(audio_folder_path, 'maimai.list')
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
gr.Markdown(value="""
# <center>【AI卖卖】在线语音生成(GPT-SoVITS)\n
### <center>模型作者:Xz乔希 https://space.bilibili.com/5859321\n
### <center>【GPT-SoVITS】在线合集:https://www.modelscope.cn/studios/xzjosh/GPT-SoVITS\n
### <center>数据集下载:https://huggingface.co./datasets/XzJosh/audiodataset\n
### <center>声音归属:扇宝 https://space.bilibili.com/698438232\n
### <center>GPT-SoVITS项目:https://github.com/RVC-Boss/GPT-SoVITS\n
### <center>使用本模型请严格遵守法律法规!发布二创作品请标注本项目作者及链接、作品使用GPT-SoVITS AI生成!\n
### <center>⚠️在线端不稳定且生成速度较慢,强烈建议下载模型本地推理!\n
""")
# with gr.Tabs():
with gr.Group():
gr.Markdown(value="*参考音频选择(不建议选较长的)")
with gr.Row():
audio_select = gr.Dropdown(label="选择参考音频(必选)", choices=list(text_to_audio_mappings.keys()))
ref_audio = gr.Audio(label="参考音频试听")
ref_text = gr.Textbox(label="参考音频文本")
# 定义更新参考文本的函数
def update_ref_text_and_audio(selected_text):
audio_path = text_to_audio_mappings.get(selected_text, "")
return selected_text, audio_path
# 绑定下拉菜单的变化到更新函数
audio_select.change(update_ref_text_and_audio, [audio_select], [ref_text, ref_audio])
# 其他 Gradio 组件和功能
prompt_language = gr.Dropdown(
label="参考音频语种", choices=["中文", "英文", "日文"], value="中文"
)
gr.Markdown(value="*请填写需要合成的目标文本,中英混合选中文,日英混合选日文,暂不支持中日混合。")
with gr.Row():
text = gr.Textbox(label="需要合成的文本", value="")
text_language = gr.Dropdown(
label="需要合成的语种", choices=["中文", "英文", "日文"], value="中文"
)
how_to_cut = gr.Radio(
label=("自动切分(长文本建议切分)"),
choices=[("不切"),("凑五句一切"),("凑50字一切"),("按中文句号。切"),("按英文句号.切"),],
value=("不切"),
interactive=True,
)
inference_button = gr.Button("合成语音", variant="primary")
output = gr.Audio(label="输出的语音")
inference_button.click(
get_tts_wav,
[audio_select, ref_text, prompt_language, text, text_language,how_to_cut],
[output],
)
gr.Markdown(value="文本切分工具,需要复制。")
with gr.Row():
text_inp = gr.Textbox(label="需要合成的切分前文本", value="")
button1 = gr.Button("凑五句一切", variant="primary")
button2 = gr.Button("凑50字一切", variant="primary")
button3 = gr.Button("按中文句号。切", variant="primary")
button4 = gr.Button("按英文句号.切", variant="primary")
text_opt = gr.Textbox(label="切分后文本", value="")
button1.click(cut1, [text_inp], [text_opt])
button2.click(cut2, [text_inp], [text_opt])
button3.click(cut3, [text_inp], [text_opt])
button4.click(cut4, [text_inp], [text_opt])
app.queue(max_size=10)
app.launch(inbrowser=True)