Spaces:
Runtime error
Runtime error
File size: 11,792 Bytes
2b8a8b8 9c5c602 2b8a8b8 9c5c602 b519699 2b8a8b8 9c5c602 e857dc9 9c5c602 2b8a8b8 993f635 2b8a8b8 993f635 2b8a8b8 993f635 2b8a8b8 993f635 2b8a8b8 993f635 2b8a8b8 993f635 2b8a8b8 3d7895a 993f635 2b8a8b8 993f635 e857dc9 9d0584c e857dc9 2b8a8b8 993f635 2b8a8b8 3d7895a 2b8a8b8 3d7895a 2b8a8b8 b6dc2cb 9c5c602 b6dc2cb 9c5c602 e857dc9 2b8a8b8 e857dc9 2b8a8b8 e857dc9 2b8a8b8 9c5c602 2b8a8b8 993f635 2b8a8b8 e857dc9 2b8a8b8 9c5c602 b6dc2cb 2b8a8b8 b6dc2cb 9c5c602 b6dc2cb 3973eb2 b6dc2cb 3973eb2 2b8a8b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import os
import math
import mido
import pumpp
import librosa
import numpy as np
import pandas as pd
from copy import deepcopy
from scipy.ndimage import gaussian_filter1d
from cqfe_models import mask_voas_cnn_v2_model, late_deep_cnn_model
SATB_THRESHOLDS = [0.23, 0.17, 0.15, 0.17]
############################################################
freqscale = librosa.cqt_frequencies(n_bins=360, fmin=32.7, bins_per_octave=60)
def bin_to_freq(bin):
return freqscale[bin]
vec_bin_to_freq = np.vectorize(bin_to_freq)
############################################################
def downsample_bins(voice):
voice_0 = np.array(voice.T[0::5]).T
voice_1 = np.array(voice.T[1::5]).T
voice_2 = np.array(voice.T[2::5]).T
voice_3 = np.array(voice.T[3::5]).T
voice_4 = np.array(voice.T[4::5]).T
voice_0 = voice_0.T[1:70].T
voice_1 = voice_1.T[1:70].T
voice_2 = voice_2.T[1:70].T
voice_3 = voice_3.T[0:69].T
voice_4 = voice_4.T[0:69].T
voice_sums = voice_0 + voice_1 + voice_2 + voice_3 + voice_4
voice_argmax = np.argmax(voice_sums, axis=1)
threshold = np.zeros(voice_sums.shape)
threshold[np.arange(voice_argmax.size), voice_argmax] = 1
threshold[:, 0] = 0
voice_sums = threshold
return voice_sums
############################################################
def bin_matrix_to_freq(matrix):
s_freqs = vec_bin_to_freq(np.argmax(matrix[0], axis=0)).reshape(-1, 1)
a_freqs = vec_bin_to_freq(np.argmax(matrix[1], axis=0)).reshape(-1, 1)
t_freqs = vec_bin_to_freq(np.argmax(matrix[2], axis=0)).reshape(-1, 1)
b_freqs = vec_bin_to_freq(np.argmax(matrix[3], axis=0)).reshape(-1, 1)
freqs = np.concatenate((s_freqs, a_freqs, t_freqs, b_freqs), axis=1).T
return freqs
############################################################
def create_midi(freq, write_path='./midi_track.mid', ticks_per_beat=58,
tempo=90, save_to_file=True, program=53, channel=0):
def freq_to_list(freq):
# List event = (pitch, velocity, time)
T = freq.shape[0]
#midi_freqs = np.squeeze(midi_freqs)
midi_freqs = np.round(69 + 12*np.log2(freq/440)).squeeze().astype('int')
t_last = 0
pitch_tm1 = 20
list_event = []
for t in range(T):
pitch_t = midi_freqs[t]
if (pitch_t != pitch_tm1):
velocity = 127
if(pitch_t == 24):
pitch_t = 0
velocity = 0
t_event = t - t_last
t_last = t
list_event.append((pitch_tm1, 0, t_event))
list_event.append((pitch_t, velocity, 0))
pitch_tm1 = pitch_t
list_event.append((pitch_tm1, 0, T - t_last))
return list_event
# Tempo
microseconds_per_beat = mido.bpm2tempo(tempo)
# Write a pianoroll in a midi file
mid = mido.MidiFile()
mid.ticks_per_beat = ticks_per_beat
# Add a new track with the instrument name to the midi file
track = mid.add_track("Voice Aah")
# transform the matrix in a list of (pitch, velocity, time)
events = freq_to_list(freq)
#print(events)
# Tempo
track.append(mido.MetaMessage('set_tempo', tempo=microseconds_per_beat))
track.append(mido.MetaMessage('channel_prefix', channel=channel))
# Add the program_change
#Choir Aahs = 53, Voice Oohs (or Doos) = 54, Synch Choir = 55
track.append(mido.Message('program_change', program=program, channel=channel))
# This list is required to shut down
# notes that are on, intensity modified, then off only 1 time
# Example :
# (60,20,0)
# (60,40,10)
# (60,0,15)
notes_on_list = []
# Write events in the midi file
for event in events:
pitch, velocity, time = event
if velocity == 0:
# Get the channel
track.append(mido.Message('note_off', note=pitch, velocity=0, time=time, channel=channel))
if(pitch in notes_on_list):
notes_on_list.remove(pitch)
else:
if pitch in notes_on_list:
track.append(mido.Message('note_off', note=pitch, velocity=0, time=time, channel=channel))
notes_on_list.remove(pitch)
time = 0
track.append(mido.Message('note_on', note=pitch, velocity=velocity, time=time, channel=channel))
notes_on_list.append(pitch)
if save_to_file:
mid.save(write_path)
return mid
############################################################
def song_to_midi(sop, alto, ten, bass):
savepath = './output.mid'
bin_matrix = np.array([sop, alto, ten, bass])
freq_matrix = bin_matrix_to_freq(bin_matrix)
mid_sop = create_midi(freq_matrix[0], save_to_file=False, program=52, channel=0)
mid_alto = create_midi(freq_matrix[1], save_to_file=False, program=52, channel=1)
mid_ten = create_midi(freq_matrix[2], save_to_file=False, program=52, channel=2)
mid_bass = create_midi(freq_matrix[3], save_to_file=False, program=52, channel=3)
mid_mix = mido.MidiFile()
mid_mix.ticks_per_beat=mid_sop.ticks_per_beat
mid_mix.tracks = mid_sop.tracks + mid_alto.tracks + mid_ten.tracks + mid_bass.tracks
mid_mix.save(savepath)
return savepath
############################################################
def song_to_dataframe(sop, alto, ten, bass):
timescale = np.arange(0, 0.011609977 * (sop.shape[1]), 0.011609977)[:sop.shape[1]]
s_argmax = vec_bin_to_freq(np.argmax(sop, axis=0))
a_argmax = vec_bin_to_freq(np.argmax(alto, axis=0))
t_argmax = vec_bin_to_freq(np.argmax(ten, axis=0))
b_argmax = vec_bin_to_freq(np.argmax(bass, axis=0))
data = np.array([timescale, s_argmax, a_argmax, t_argmax, b_argmax], dtype=np.float32).T
columns = ['Timestep', 'Soprano', 'Alto', 'Tenor', 'Bass']
df = pd.DataFrame(data, columns=columns)
return df
############################################################
def prediction_postproc(input_array, argmax_and_threshold=True,
gaussian_blur=True,
threshold_value=0):
prediction = np.moveaxis(input_array, 0, 1).reshape(360, -1)
thres_reference = deepcopy(prediction)
if(argmax_and_threshold):
prediction = np.argmax(prediction, axis=0)
prediction = np.array([prediction[i] if thres_reference[prediction[i], i] >= threshold_value else 0 for i in np.arange(prediction.size)])
threshold = np.zeros((360, prediction.shape[0]))
threshold[prediction, np.arange(prediction.size)] = 1
prediction = threshold
if(gaussian_blur):
prediction = np.array(gaussian_filter1d(prediction, 1, axis=0, mode='wrap'))
prediction = (prediction - np.min(prediction))/(np.max(prediction)-np.min(prediction))
return prediction
############################################################
def get_hcqt_params():
bins_per_octave = 60
n_octaves = 6
over_sample = 5
harmonics = [1, 2, 3, 4, 5]
sr = 22050
fmin = 32.7
hop_length = 256
return bins_per_octave, n_octaves, harmonics, sr, fmin, hop_length, over_sample
############################################################
def create_pump_object():
(bins_per_octave, n_octaves, harmonics,
sr, f_min, hop_length, over_sample) = get_hcqt_params()
p_phdif = pumpp.feature.HCQTPhaseDiff(name='dphase', sr=sr, hop_length=hop_length,
fmin=f_min, n_octaves=n_octaves, over_sample=over_sample, harmonics=harmonics, log=True)
pump = pumpp.Pump(p_phdif)
return pump
############################################################
def compute_pump_features(pump, audio_fpath):
data = pump(audio_f=audio_fpath)
return data
############################################################
def get_mpe_prediction(model, audio_file=None):
"""Generate output from a model given an input numpy file.
Part of this function is part of deepsalience
"""
split_value = 4000
if audio_file is not None:
pump = create_pump_object()
features = compute_pump_features(pump, audio_file)
input_hcqt = features['dphase/mag'][0]
input_dphase = features['dphase/dphase'][0]
else:
raise ValueError("One audio_file must be specified")
input_hcqt = input_hcqt.transpose(1, 2, 0)[np.newaxis, :, :, :]
input_dphase = input_dphase.transpose(1, 2, 0)[np.newaxis, :, :, :]
n_t = input_hcqt.shape[3]
t_slices = list(np.arange(0, n_t, split_value))
output_list = []
for t in t_slices:
p = model.predict([np.transpose(input_hcqt[:, :, :, t:t+split_value], (0, 1, 3, 2)),
np.transpose(input_dphase[:, :, :, t:t+split_value], (0, 1, 3, 2))]
)[0, :, :]
output_list.append(p)
predicted_output = np.hstack(output_list).astype(np.float32)
return predicted_output
############################################################
def get_va_prediction(model, f0_matrix):
splits = f0_matrix.shape[1]//256
splits_diff = 256 - (f0_matrix.shape[1] - splits * 256)
fill = np.zeros((360, splits_diff))
mix_filled = np.concatenate((np.copy(f0_matrix), fill), axis=1)
mix_filled = np.reshape(mix_filled, (360, -1, 256, 1)).transpose((1, 0, 2, 3))
batches = math.ceil(mix_filled.shape[0]/24)
s_pred_result = np.zeros((0, 360, 256))
a_pred_result = np.zeros((0, 360, 256))
t_pred_result = np.zeros((0, 360, 256))
b_pred_result = np.zeros((0, 360, 256))
for i in range(batches):
s_pred, a_pred, t_pred, b_pred = model.predict(mix_filled[i*24:(i+1)*24])
s_pred_result = np.append(s_pred_result, s_pred, axis=0)
a_pred_result = np.append(a_pred_result, a_pred, axis=0)
t_pred_result = np.append(t_pred_result, t_pred, axis=0)
b_pred_result = np.append(b_pred_result, b_pred, axis=0)
s_pred_result = prediction_postproc(s_pred_result, threshold_value=SATB_THRESHOLDS[0])[:, :f0_matrix.shape[1]]
a_pred_result = prediction_postproc(a_pred_result, threshold_value=SATB_THRESHOLDS[1])[:, :f0_matrix.shape[1]]
t_pred_result = prediction_postproc(t_pred_result, threshold_value=SATB_THRESHOLDS[2])[:, :f0_matrix.shape[1]]
b_pred_result = prediction_postproc(b_pred_result, threshold_value=SATB_THRESHOLDS[3])[:, :f0_matrix.shape[1]]
return s_pred_result, a_pred_result, t_pred_result, b_pred_result
############################################################
def cqfe(audiofile, mpe=late_deep_cnn_model(), va=mask_voas_cnn_v2_model()):
savepath_csv = './output.csv'
savepath_hdf5 = './output.hdf5'
mpe_pred = get_mpe_prediction(mpe, audiofile)
s_pred, a_pred, t_pred, b_pred = get_va_prediction(va, mpe_pred)
output_midi = song_to_midi(s_pred, a_pred, t_pred, b_pred)
output_df = song_to_dataframe(s_pred, a_pred, t_pred, b_pred)
output_df.to_csv(savepath_csv, mode='w', header=True)
output_df.to_hdf(savepath_hdf5, key='F0', mode='w', complevel=9, complib='blosc', append=False, format='table')
ax1 = output_df.plot.scatter(x='Timestep', y='Bass', s=1, color='#2f29e3', label='Bass')
ax2 = output_df.plot.scatter(x='Timestep', y='Tenor', s=1, color='#e36129', label='Tenor', ax=ax1)
ax3 = output_df.plot.scatter(x='Timestep', y='Alto', s=1, color='#29e35a', label='Alto', ax=ax1)
ax4 = output_df.plot.scatter(x='Timestep', y='Soprano', s=1, color='#d3d921', label='Soprano', ax=ax1)
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Freq (Hz)')
fig = ax1.get_figure()
fig.set_dpi(150)
return [output_midi, savepath_csv, savepath_hdf5], fig
############################################################
|