from __future__ import annotations
#from typing import TYPE_CHECKING, List
import logging
import json
import commentjson as cjson
import os
#import sys
import requests
#import urllib3
import platform
import base64
from io import BytesIO
from PIL import Image
#from tqdm import tqdm
import colorama
#from duckduckgo_search import ddg
#import asyncio
#import aiohttp
#from enum import Enum
import uuid
import openai
#from ..presets import *
from ..llama_func import *
from ..utils import *
from .. import shared
from ..config import *
from modules import config
from .base_model import BaseLLMModel, ModelType
class OpenAIClient(BaseLLMModel):
def __init__(
self,
model_name,
api_key,
system_prompt=INITIAL_SYSTEM_PROMPT,
temperature=1.0,
top_p=1.0,
user_name=""
) -> None:
super().__init__(
model_name=model_name,
temperature=temperature,
top_p=top_p,
system_prompt=system_prompt,
user=user_name
)
self.api_key = api_key
self.need_api_key = True
self._refresh_header()
def get_answer_stream_iter(self):
response = self._get_response(stream=True)
if response is not None:
iter = self._decode_chat_response(response)
partial_text = ""
for i in iter:
partial_text += i
yield partial_text
else:
yield STANDARD_ERROR_MSG + GENERAL_ERROR_MSG
def get_answer_at_once(self):
response = self._get_response()
response = json.loads(response.text)
content = response["choices"][0]["message"]["content"]
total_token_count = response["usage"]["total_tokens"]
return content, total_token_count
def count_token(self, user_input):
input_token_count = count_token(construct_user(user_input))
if self.system_prompt is not None and len(self.all_token_counts) == 0:
system_prompt_token_count = count_token(
construct_system(self.system_prompt)
)
return input_token_count + system_prompt_token_count
return input_token_count
def billing_info(self):
try:
curr_time = datetime.datetime.now()
last_day_of_month = get_last_day_of_month(
curr_time).strftime("%Y-%m-%d")
first_day_of_month = curr_time.replace(day=1).strftime("%Y-%m-%d")
usage_url = f"{shared.state.usage_api_url}?start_date={first_day_of_month}&end_date={last_day_of_month}"
try:
usage_data = self._get_billing_data(usage_url)
except Exception as e:
logging.error(f"获取API使用情况失败:" + str(e))
return i18n("**获取API使用情况失败**")
# rounded_usage = "{:.5f}".format(usage_data["total_usage"] / 100)
rounded_usage = round(usage_data["total_usage"] / 100, 5)
usage_percent = round(usage_data["total_usage"] / usage_limit, 2)
# return i18n("**本月使用金额** ") + f"\u3000 ${rounded_usage}"
return """\
""" + i18n("本月使用金额") + f"""
${rounded_usage}${usage_limit}
"""
except requests.exceptions.ConnectTimeout:
status_text = (
STANDARD_ERROR_MSG + CONNECTION_TIMEOUT_MSG + ERROR_RETRIEVE_MSG
)
return status_text
except requests.exceptions.ReadTimeout:
status_text = STANDARD_ERROR_MSG + READ_TIMEOUT_MSG + ERROR_RETRIEVE_MSG
return status_text
except Exception as e:
import traceback
traceback.print_exc()
logging.error(i18n("获取API使用情况失败:") + str(e))
return STANDARD_ERROR_MSG + ERROR_RETRIEVE_MSG
def set_token_upper_limit(self, new_upper_limit):
pass
@shared.state.switching_api_key # 在不开启多账号模式的时候,这个装饰器不会起作用
def _get_response(self, stream=False):
openai_api_key = self.api_key
system_prompt = self.system_prompt
history = self.history
logging.debug(colorama.Fore.YELLOW +
f"{history}" + colorama.Fore.RESET)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}",
}
if system_prompt is not None:
history = [construct_system(system_prompt), *history]
payload = {
"model": self.model_name,
"messages": history,
"temperature": self.temperature,
"top_p": self.top_p,
"n": self.n_choices,
"stream": stream,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
}
if self.max_generation_token is not None:
payload["max_tokens"] = self.max_generation_token
if self.stop_sequence is not None:
payload["stop"] = self.stop_sequence
if self.logit_bias is not None:
payload["logit_bias"] = self.logit_bias
if self.user_identifier:
payload["user"] = self.user_identifier
if stream:
timeout = TIMEOUT_STREAMING
else:
timeout = TIMEOUT_ALL
# 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求
if shared.state.completion_url != COMPLETION_URL:
logging.info(f"使用自定义API URL: {shared.state.completion_url}")
# 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求
if shared.state.completion_url != COMPLETION_URL:
logging.info(f"使用自定义API URL: {shared.state.completion_url}")
with retrieve_proxy():
try:
response = requests.post(
shared.state.completion_url,
headers=headers,
json=payload,
stream=stream,
timeout=timeout,
)
except:
return None
return response
def _refresh_header(self):
self.headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}",
}
def _get_billing_data(self, billing_url):
with retrieve_proxy():
response = requests.get(
billing_url,
headers=self.headers,
timeout=TIMEOUT_ALL,
)
if response.status_code == 200:
data = response.json()
return data
else:
raise Exception(
f"API request failed with status code {response.status_code}: {response.text}"
)
def _decode_chat_response(self, response):
iter = response.iter_lines()
error_msg = ""
for chunk in iter:
if chunk:
chunk = chunk.decode()
chunk_length = len(chunk)
try:
if chunk_length > 6:
chunk = json.loads(chunk[6:])
else:
raise Exception()
except json.JSONDecodeError:
print(i18n("JSON解析错误,收到的内容: ") + f"{chunk}")
error_msg += chunk
continue
if "delta" in chunk["choices"][0]:
if chunk["choices"][0]["finish_reason"] == "stop":
break
try:
yield chunk["choices"][0]["delta"]["content"]
except Exception as e:
# logging.error(f"Error: {e}")
continue
if error_msg:
raise Exception(error_msg)
def set_key(self, new_access_key):
ret = super().set_key(new_access_key)
self._refresh_header()
return ret
class AZUREOpenAIClient(BaseLLMModel):
def __init__(
self,
model_name,
api_key,
system_prompt=INITIAL_SYSTEM_PROMPT,
temperature=1.0,
top_p=1.0,
) -> None:
super().__init__(
model_name=model_name,
temperature=temperature,
top_p=top_p,
system_prompt=system_prompt,
)
self.api_key = api_key
self.need_api_key = True
def get_answer_stream_iter(self):
response = self._get_response(stream=True)
if response is not None:
iter = self._decode_chat_response(response)
partial_text = ""
for i in iter:
partial_text += i
yield partial_text
else:
yield STANDARD_ERROR_MSG + GENERAL_ERROR_MSG
def get_answer_at_once(self):
response = self._get_response()
response = json.loads(response.text)
content = response["choices"][0]["message"]["content"]
total_token_count = response["usage"]["total_tokens"]
return content, total_token_count
def _decode_chat_response(self, response):
error_msg = ""
for chunk in response:
if chunk:
if "delta" in chunk["choices"][0]:
if chunk["choices"][0]["finish_reason"] == "stop":
break
try:
yield chunk["choices"][0]["delta"]["content"]
except Exception as e:
# logging.error(f"Error: {e}")
continue
if error_msg:
raise Exception(error_msg)
def count_token(self, user_input):
input_token_count = count_token(construct_user(user_input))
if self.system_prompt is not None and len(self.all_token_counts) == 0:
system_prompt_token_count = count_token(
construct_system(self.system_prompt)
)
return input_token_count + system_prompt_token_count
return input_token_count
def set_token_upper_limit(self, new_upper_limit):
pass
def _get_response(self, stream=False):
system_prompt = self.system_prompt
history = self.history
logging.debug(colorama.Fore.YELLOW +
f"{history}" + colorama.Fore.RESET)
if system_prompt is not None:
history = [construct_system(system_prompt), *history]
payload = {
"model": self.model_name,
"messages": history,
"temperature": self.temperature,
"top_p": self.top_p,
"n": self.n_choices,
"stream": stream,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
}
if self.model_name == "azure-gpt-35":
openai.api_type = "azure"
openai.api_version = azure_openai_version
openai.api_base = azure_openai_endpoint
openai.api_key = self.api_key
payload["engine"] = azure_openai_engine
if self.max_generation_token is not None:
payload["max_tokens"] = self.max_generation_token
if self.stop_sequence is not None:
payload["stop"] = self.stop_sequence
if self.logit_bias is not None:
payload["logit_bias"] = self.logit_bias
if self.user_identifier:
payload["user"] = self.user_identifier
if stream:
timeout = TIMEOUT_STREAMING
else:
timeout = TIMEOUT_ALL
return openai.ChatCompletion.create(timeout=timeout, **payload)
class ChatGLM_Client(BaseLLMModel):
def __init__(self, model_name, user_name="") -> None:
super().__init__(model_name=model_name, user=user_name)
from transformers import AutoTokenizer, AutoModel
import torch
global CHATGLM_TOKENIZER, CHATGLM_MODEL
if CHATGLM_TOKENIZER is None or CHATGLM_MODEL is None:
system_name = platform.system()
model_path = chatglm_6b_path
if model_path == "":
if os.path.exists("models"):
model_dirs = os.listdir("models")
if model_name in model_dirs:
model_path = f"models/{model_name}"
if model_path is not None:
model_source = model_path
else:
model_source = f"THUDM/{model_name}"
print(model_source)
CHATGLM_TOKENIZER = AutoTokenizer.from_pretrained(
model_source, trust_remote_code=True
)
quantified = False
if "int4" in model_name:
quantified = True
model = AutoModel.from_pretrained(
model_source, trust_remote_code=True
)
if torch.cuda.is_available():
# run on CUDA
logging.info("CUDA is available, using CUDA")
model = model.half().cuda()
# mps加速还存在一些问题,暂时不使用
elif system_name == "Darwin" and model_path is not None and not quantified:
logging.info("Running on macOS, using MPS")
# running on macOS and model already downloaded
model = model.half().to("mps")
else:
logging.info("GPU is not available, using CPU")
model = model.float()
model = model.eval()
CHATGLM_MODEL = model
def _get_glm_style_input(self):
history = [x["content"] for x in self.history]
query = history.pop()
logging.debug(colorama.Fore.YELLOW +
f"{history}" + colorama.Fore.RESET)
assert (
len(history) % 2 == 0
), f"History should be even length. current history is: {history}"
history = [[history[i], history[i + 1]]
for i in range(0, len(history), 2)]
return history, query
def get_answer_at_once(self):
history, query = self._get_glm_style_input()
response, _ = CHATGLM_MODEL.chat(
CHATGLM_TOKENIZER, query, history=history)
return response, len(response)
def get_answer_stream_iter(self):
history, query = self._get_glm_style_input()
for response, history in CHATGLM_MODEL.stream_chat(
CHATGLM_TOKENIZER,
query,
history,
max_length=self.token_upper_limit,
top_p=self.top_p,
temperature=self.temperature,
):
yield response
def get_model(
model_name,
lora_model_path=None,
access_key=None,
temperature=None,
top_p=None,
system_prompt=None,
user_name=""
) -> BaseLLMModel:
msg = i18n("模型设置为了:") + f" {model_name}"
model_type = ModelType.get_type(model_name)
lora_selector_visibility = False
lora_choices = []
dont_change_lora_selector = False
if model_type != ModelType.OpenAI:
config.local_embedding = True
# del current_model.model
model = None
try:
if model_type == ModelType.OpenAI:
logging.info(f"正在加载OpenAI模型: {model_name}")
model = OpenAIClient(
model_name=model_name,
api_key=access_key,
system_prompt=system_prompt,
temperature=temperature,
top_p=top_p,
user_name=user_name,
)
elif model_type == ModelType.Azure:
logging.info(f"正在加载Azure Openai模型: {model_name}")
model = AZUREOpenAIClient(
model_name=model_name,
system_prompt=system_prompt,
temperature=temperature,
top_p=top_p,
api_key=access_key
)
elif model_type == ModelType.ChatGLM:
logging.info(f"正在加载ChatGLM模型: {model_name}")
model = ChatGLM_Client(model_name, user_name=user_name)
elif model_type == ModelType.Unknown:
raise ValueError(f"未知模型: {model_name}")
logging.info(msg)
chatbot = gr.Chatbot.update(label=model_name)
except Exception as e:
logging.error(e)
msg = f"{STANDARD_ERROR_MSG}: {e}"
if dont_change_lora_selector:
return model, msg, chatbot
else:
return model, msg, chatbot, gr.Dropdown.update(choices=lora_choices, visible=lora_selector_visibility)
if __name__ == "__main__":
with open("config.json", "r") as f:
openai_api_key = cjson.load(f)["openai_api_key"]
# set logging level to debug
logging.basicConfig(level=logging.DEBUG)
# client = ModelManager(model_name="gpt-3.5-turbo", access_key=openai_api_key)
client = get_model(model_name="chatglm-6b-int4")
chatbot = []
stream = False
# 测试账单功能
logging.info(colorama.Back.GREEN + "测试账单功能" + colorama.Back.RESET)
logging.info(client.billing_info())
# 测试问答
logging.info(colorama.Back.GREEN + "测试问答" + colorama.Back.RESET)
question = "巴黎是中国的首都吗?"
for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
logging.info(i)
logging.info(f"测试问答后history : {client.history}")
# 测试记忆力
logging.info(colorama.Back.GREEN + "测试记忆力" + colorama.Back.RESET)
question = "我刚刚问了你什么问题?"
for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
logging.info(i)
logging.info(f"测试记忆力后history : {client.history}")
# 测试重试功能
logging.info(colorama.Back.GREEN + "测试重试功能" + colorama.Back.RESET)
for i in client.retry(chatbot=chatbot, stream=stream):
logging.info(i)
logging.info(f"重试后history : {client.history}")
# # 测试总结功能
# print(colorama.Back.GREEN + "测试总结功能" + colorama.Back.RESET)
# chatbot, msg = client.reduce_token_size(chatbot=chatbot)
# print(chatbot, msg)
# print(f"总结后history: {client.history}")