Spaces:
Configuration error
Configuration error
File size: 11,654 Bytes
23db38d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import streamlit as st
import os
from openai import OpenAI
from dotenv import load_dotenv
load_dotenv()
import base64
load_dotenv()
def get_together_models():
return [
"meta-llama/Meta-Llama-3-8B-Instruct-Turbo",
"meta-llama/Meta-Llama-3-70B-Instruct-Lite",
"meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
"google/gemma-2-9b-it",
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
"deepseek-ai/deepseek-coder-33b-instruct",
"meta-llama/Meta-Llama-3-70B-Instruct-Turbo",
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
"meta-llama/Meta-Llama-3-8B-Instruct-Lite",
"meta-llama/Meta-Llama-3-70B-Instruct-Lite",
"google/gemma-2-27b-it",
"allenai/OLMo-7B-Instruct",
"zero-one-ai/Yi-34B-Chat",
"allenai/OLMo-7B-Twin-2T",
"allenai/OLMo-7B",
"Austism/chronos-hermes-13b",
"cognitivecomputations/dolphin-2.5-mixtral-8x7b",
"databricks/dbrx-instruct",
"deepseek-ai/deepseek-llm-67b-chat",
"garage-bAInd/Platypus2-70B-instruct",
"google/gemma-2b-it",
"google/gemma-7b-it",
"Gryphe/MythoMax-L2-13b",
"lmsys/vicuna-13b-v1.5",
"lmsys/vicuna-7b-v1.5",
"codellama/CodeLlama-13b-Instruct-hf",
"codellama/CodeLlama-34b-Instruct-hf",
"codellama/CodeLlama-70b-Instruct-hf",
"codellama/CodeLlama-7b-Instruct-hf",
"meta-llama/Llama-2-70b-chat-hf",
"meta-llama/Llama-2-13b-chat-hf",
"meta-llama/Llama-2-7b-chat-hf",
"meta-llama/Llama-3-8b-chat-hf",
"meta-llama/Llama-3-70b-chat-hf",
"mistralai/Mistral-7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.2",
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mixtral-8x22B-Instruct-v0.1",
"NousResearch/Nous-Capybara-7B-V1p9",
"NousResearch/Nous-Hermes-2-Mistral-7B-DPO",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT",
"NousResearch/Nous-Hermes-llama-2-7b",
"NousResearch/Nous-Hermes-Llama2-13b",
"NousResearch/Nous-Hermes-2-Yi-34B",
"openchat/openchat-3.5-1210",
"Open-Orca/Mistral-7B-OpenOrca",
"Qwen/Qwen1.5-0.5B-Chat",
"Qwen/Qwen1.5-1.8B-Chat",
"Qwen/Qwen1.5-4B-Chat",
"Qwen/Qwen1.5-7B-Chat",
"Qwen/Qwen1.5-14B-Chat",
"Qwen/Qwen1.5-32B-Chat",
"Qwen/Qwen1.5-72B-Chat",
"Qwen/Qwen1.5-110B-Chat",
"Qwen/Qwen2-72B-Instruct",
"snorkelai/Snorkel-Mistral-PairRM-DPO",
"Snowflake/snowflake-arctic-instruct",
"togethercomputer/alpaca-7b",
"teknium/OpenHermes-2-Mistral-7B",
"teknium/OpenHermes-2p5-Mistral-7B",
"togethercomputer/Llama-2-7B-32K-Instruct",
"togethercomputer/RedPajama-INCITE-Chat-3B-v1",
"togethercomputer/RedPajama-INCITE-7B-Chat",
"togethercomputer/StripedHyena-Nous-7B",
"Undi95/ReMM-SLERP-L2-13B",
"Undi95/Toppy-M-7B",
"WizardLM/WizardLM-13B-V1.2",
"upstage/SOLAR-10.7B-Instruct-v1.0"
]
# Function to get Groq chat models
def get_groq_models():
return [
# "llama-3.1-405b-reasoning",
"llama-3.1-70b-versatile",
"mixtral-8x7b-32768",
"llama3-groq-70b-8192-tool-use-preview",
"llama-3.1-8b-instant",
"llama3-groq-8b-8192-tool-use-preview",
"llama-guard-3-8b",
"llama3-70b-8192",
"llama3-8b-8192",
"gemma-7b-it",
"gemma2-9b-it",
"whisper-large-v3"
]
# Function to get OpenAI-like models
def get_openai_like_models():
return [
"claude-3-5-sonnet",
"gpt-4-turbo-128k-france",
"gemini-1.0-pro",
"gemini-1.5-pro",
"gemini-1.5-flash",
"Llama-3-70B-Instruct",
"Mixtral-8x7B-Instruct-v0.1",
"CodeLlama-2",
"jina-embeddings-v2-base-de",
"jina-embeddings-v2-base-code",
"text-embedding-bge-m3",
"llava-v1.6-34b",
"llava-v1.6-vicuna-13b",
"gpt-35-turbo",
"text-embedding-ada-002",
"gpt-4-32k-1",
"gpt-4-32k-canada",
"gpt-4-32k-france",
"text-embedding-ada-002-france",
"mistral-large-32k-france",
"Llama-3.1-405B-Instruct-US",
"Mistral-Large-2407",
"Mistral-Nemo-2407"
]
def to_leetspeak(text):
leet_dict = {
'a': '4', 'e': '3', 'g': '6', 'i': '1', 'o': '0', 's': '5', 't': '7',
'A': '4', 'E': '3', 'G': '6', 'I': '1', 'O': '0', 'S': '5', 'T': '7'
}
return ''.join(leet_dict.get(char, char) for char in text)
def to_base64(text):
return base64.b64encode(text.encode()).decode()
def to_binary(text):
return ' '.join(format(ord(char), '08b') for char in text)
def to_emoji(text):
emoji_dict = {
'a': 'π
°', 'b': 'π
±', 'c': 'π
²', 'd': 'π
³', 'e': 'π
΄', 'f': 'π
΅', 'g': 'π
Ά', 'h': 'π
·', 'i': 'π
Έ', 'j': 'π
Ή',
'k': 'π
Ί', 'l': 'π
»', 'm': 'π
Ό', 'n': 'π
½', 'o': 'π
Ύ', 'p': 'π
Ώ', 'q': 'π', 'r': 'π', 's': 'π', 't': 'π',
'u': 'π', 'v': 'π
', 'w': 'π', 'x': 'π', 'y': 'π', 'z': 'π',
'A': 'π
°', 'B': 'π
±', 'C': 'π
²', 'D': 'π
³', 'E': 'π
΄', 'F': 'π
΅', 'G': 'π
Ά', 'H': 'π
·', 'I': 'π
Έ', 'J': 'π
Ή',
'K': 'π
Ί', 'L': 'π
»', 'M': 'π
Ό', 'N': 'π
½', 'O': 'π
Ύ', 'P': 'π
Ώ', 'Q': 'π', 'R': 'π', 'S': 'π', 'T': 'π',
'U': 'π', 'V': 'π
', 'W': 'π', 'X': 'π', 'Y': 'π', 'Z': 'π'
}
return ''.join(emoji_dict.get(char, char) for char in text)
# Initialize session state
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'api_key' not in st.session_state:
st.session_state.api_key = ""
if 'selected_model' not in st.session_state:
st.session_state.selected_model = ""
if 'selected_service' not in st.session_state:
st.session_state.selected_service = ""
if 'base_url' not in st.session_state:
st.session_state.base_url = ""
# Sidebar
st.sidebar.title("Chat Settings")
# Service selection
service = st.sidebar.radio("Select a service:", ("Together AI","OpenAI-like", "Groq"))
st.session_state.selected_service = service
# Model selection based on the chosen service
if service == "OpenAI-like":
openai_like_models = get_openai_like_models()
selected_model = st.sidebar.selectbox("Select an OpenAI-like model:", openai_like_models)
base_url = st.sidebar.text_input("Enter the base URL for the OpenAI-like API:",type="password",value=os.getenv('API_BASE'))
api_key = st.sidebar.text_input("Enter your API Key:", type="password",value=os.getenv('API_KEY'))
if api_key:
st.session_state.api_key = api_key
if base_url:
st.session_state.base_url = base_url
elif service == "Groq":
groq_models = get_groq_models()
api_key = st.sidebar.text_input("Enter your API Key:", type="password",value=os.getenv('GROQ_API_KEY'))
if api_key:
st.session_state.api_key = api_key
selected_model = st.sidebar.selectbox("Select a Groq model:", groq_models)
base_url = "https://api.groq.com/openai/v1"
else: # OpenAI-like
together_models = get_together_models()
api_key = st.sidebar.text_input("Enter your API Key:", type="password",value=os.getenv('TOGETHER_API_KEY'))
if api_key:
st.session_state.api_key = api_key
selected_model = st.sidebar.selectbox("Select a Together AI model:", together_models)
base_url = "https://api.together.xyz/v1"
if selected_model:
st.session_state.selected_model = selected_model
# Main chat interface
st.title("AI Chat Application")
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# User input
if prompt := st.chat_input("You:"):
if not st.session_state.api_key:
st.error("Please enter an API key.")
elif not st.session_state.selected_model:
st.error("Please select a model.")
elif service == "OpenAI-like" and not st.session_state.base_url:
st.error("Please enter the base URL for the OpenAI-like API.")
else:
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Generate AI response
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
try:
if service == "OpenAI-like":
client = OpenAI(
api_key=st.session_state.api_key,
base_url=st.session_state.base_url + '/v2',
)
else:
client = OpenAI(api_key=st.session_state.api_key, base_url=base_url)
for response in client.chat.completions.create(
model=st.session_state.selected_model,
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=True,
max_tokens=1000,
temperature=0.7
):
full_response += (response.choices[0].delta.content or "")
message_placeholder.markdown(full_response + "β")
message_placeholder.markdown(full_response)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
full_response = "I apologize, but an error occurred while generating the response."
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": full_response})
# Clear chat button
if st.sidebar.button("Clear Chat"):
st.session_state.messages = []
st.rerun()
with st.sidebar:
st.title("Text Conversion")
input_text = st.text_area("Enter text to convert:")
col1, col2 = st.columns(2)
with col1:
if st.button("To Leetspeak"):
if input_text:
converted_text = to_leetspeak(input_text)
st.text_area("Leetspeak Result:", converted_text, height=100)
st.code(converted_text, language="text")
if st.button("To Base64"):
if input_text:
converted_text = to_base64(input_text)
st.text_area("Base64 Result:", converted_text, height=100)
st.code(converted_text, language="text")
with col2:
if st.button("To Binary"):
if input_text:
converted_text = to_binary(input_text)
st.text_area("Binary Result:", converted_text, height=100)
st.code(converted_text, language="text")
if st.button("To Emoji"):
if input_text:
converted_text = to_emoji(input_text)
st.text_area("Emoji Result:", converted_text, height=100)
st.code(converted_text, language="text")
|