File size: 11,654 Bytes
23db38d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
 


import streamlit as st
import os
from openai import OpenAI
from dotenv import load_dotenv
load_dotenv()
import base64

load_dotenv()
 
def get_together_models():
    return [
        "meta-llama/Meta-Llama-3-8B-Instruct-Turbo",
        "meta-llama/Meta-Llama-3-70B-Instruct-Lite",
        "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
        "google/gemma-2-9b-it",
        "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
        "deepseek-ai/deepseek-coder-33b-instruct",
        "meta-llama/Meta-Llama-3-70B-Instruct-Turbo",
         "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
        "meta-llama/Meta-Llama-3-8B-Instruct-Lite",
        "meta-llama/Meta-Llama-3-70B-Instruct-Lite",
        "google/gemma-2-27b-it",
        "allenai/OLMo-7B-Instruct",
        "zero-one-ai/Yi-34B-Chat",
        "allenai/OLMo-7B-Twin-2T",
        "allenai/OLMo-7B",
        "Austism/chronos-hermes-13b",
        "cognitivecomputations/dolphin-2.5-mixtral-8x7b",
        "databricks/dbrx-instruct",
        
        "deepseek-ai/deepseek-llm-67b-chat",
        "garage-bAInd/Platypus2-70B-instruct",
        "google/gemma-2b-it",
        "google/gemma-7b-it",
        "Gryphe/MythoMax-L2-13b",
        "lmsys/vicuna-13b-v1.5",
        "lmsys/vicuna-7b-v1.5",
        "codellama/CodeLlama-13b-Instruct-hf",
        "codellama/CodeLlama-34b-Instruct-hf",
        "codellama/CodeLlama-70b-Instruct-hf",
        "codellama/CodeLlama-7b-Instruct-hf",
        "meta-llama/Llama-2-70b-chat-hf",
        "meta-llama/Llama-2-13b-chat-hf",
        "meta-llama/Llama-2-7b-chat-hf",
        "meta-llama/Llama-3-8b-chat-hf",
        "meta-llama/Llama-3-70b-chat-hf",
        "mistralai/Mistral-7B-Instruct-v0.1",
        "mistralai/Mistral-7B-Instruct-v0.2",
        "mistralai/Mistral-7B-Instruct-v0.3",
        "mistralai/Mixtral-8x7B-Instruct-v0.1",
        "mistralai/Mixtral-8x22B-Instruct-v0.1",
        "NousResearch/Nous-Capybara-7B-V1p9",
        "NousResearch/Nous-Hermes-2-Mistral-7B-DPO",
        "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
        "NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT",
        "NousResearch/Nous-Hermes-llama-2-7b",
        "NousResearch/Nous-Hermes-Llama2-13b",
        "NousResearch/Nous-Hermes-2-Yi-34B",
        "openchat/openchat-3.5-1210",
        "Open-Orca/Mistral-7B-OpenOrca",
        "Qwen/Qwen1.5-0.5B-Chat",
        "Qwen/Qwen1.5-1.8B-Chat",
        "Qwen/Qwen1.5-4B-Chat",
        "Qwen/Qwen1.5-7B-Chat",
        "Qwen/Qwen1.5-14B-Chat",
        "Qwen/Qwen1.5-32B-Chat",
        "Qwen/Qwen1.5-72B-Chat",
        "Qwen/Qwen1.5-110B-Chat",
        "Qwen/Qwen2-72B-Instruct",
        "snorkelai/Snorkel-Mistral-PairRM-DPO",
        "Snowflake/snowflake-arctic-instruct",
        "togethercomputer/alpaca-7b",
        "teknium/OpenHermes-2-Mistral-7B",
        "teknium/OpenHermes-2p5-Mistral-7B",
        "togethercomputer/Llama-2-7B-32K-Instruct",
        "togethercomputer/RedPajama-INCITE-Chat-3B-v1",
        "togethercomputer/RedPajama-INCITE-7B-Chat",
        "togethercomputer/StripedHyena-Nous-7B",
        "Undi95/ReMM-SLERP-L2-13B",
        "Undi95/Toppy-M-7B",
        "WizardLM/WizardLM-13B-V1.2",
        "upstage/SOLAR-10.7B-Instruct-v1.0"
    ]


# Function to get Groq chat models
def get_groq_models():
    return [
        # "llama-3.1-405b-reasoning",
        "llama-3.1-70b-versatile",
        "mixtral-8x7b-32768",
        "llama3-groq-70b-8192-tool-use-preview",
        "llama-3.1-8b-instant",
        "llama3-groq-8b-8192-tool-use-preview",
        "llama-guard-3-8b",
        "llama3-70b-8192",
        "llama3-8b-8192",
        "gemma-7b-it",
        "gemma2-9b-it",
        "whisper-large-v3"
    ]

# Function to get OpenAI-like models
def get_openai_like_models():
    return [
        "claude-3-5-sonnet",
        "gpt-4-turbo-128k-france",
        "gemini-1.0-pro",
        "gemini-1.5-pro",
        "gemini-1.5-flash",
        "Llama-3-70B-Instruct",
        "Mixtral-8x7B-Instruct-v0.1",
        "CodeLlama-2",
        "jina-embeddings-v2-base-de",
        "jina-embeddings-v2-base-code",
        "text-embedding-bge-m3",
        "llava-v1.6-34b",
        "llava-v1.6-vicuna-13b",
        "gpt-35-turbo",
        "text-embedding-ada-002",
        "gpt-4-32k-1",
        "gpt-4-32k-canada",
        "gpt-4-32k-france",
        "text-embedding-ada-002-france",
        "mistral-large-32k-france",
        "Llama-3.1-405B-Instruct-US",
        "Mistral-Large-2407",
        "Mistral-Nemo-2407"
    ]


 
def to_leetspeak(text):
    leet_dict = {
        'a': '4', 'e': '3', 'g': '6', 'i': '1', 'o': '0', 's': '5', 't': '7',
        'A': '4', 'E': '3', 'G': '6', 'I': '1', 'O': '0', 'S': '5', 'T': '7'
    }
    return ''.join(leet_dict.get(char, char) for char in text)

def to_base64(text):
    return base64.b64encode(text.encode()).decode()

def to_binary(text):
    return ' '.join(format(ord(char), '08b') for char in text)

def to_emoji(text):
    emoji_dict = {
        'a': 'πŸ…°', 'b': 'πŸ…±', 'c': 'πŸ…²', 'd': 'πŸ…³', 'e': 'πŸ…΄', 'f': 'πŸ…΅', 'g': 'πŸ…Ά', 'h': 'πŸ…·', 'i': 'πŸ…Έ', 'j': 'πŸ…Ή',
        'k': 'πŸ…Ί', 'l': 'πŸ…»', 'm': 'πŸ…Ό', 'n': 'πŸ…½', 'o': 'πŸ…Ύ', 'p': 'πŸ…Ώ', 'q': 'πŸ†€', 'r': 'πŸ†', 's': 'πŸ†‚', 't': 'πŸ†ƒ',
        'u': 'πŸ†„', 'v': 'πŸ†…', 'w': 'πŸ††', 'x': 'πŸ†‡', 'y': 'πŸ†ˆ', 'z': 'πŸ†‰',
        'A': 'πŸ…°', 'B': 'πŸ…±', 'C': 'πŸ…²', 'D': 'πŸ…³', 'E': 'πŸ…΄', 'F': 'πŸ…΅', 'G': 'πŸ…Ά', 'H': 'πŸ…·', 'I': 'πŸ…Έ', 'J': 'πŸ…Ή',
        'K': 'πŸ…Ί', 'L': 'πŸ…»', 'M': 'πŸ…Ό', 'N': 'πŸ…½', 'O': 'πŸ…Ύ', 'P': 'πŸ…Ώ', 'Q': 'πŸ†€', 'R': 'πŸ†', 'S': 'πŸ†‚', 'T': 'πŸ†ƒ',
        'U': 'πŸ†„', 'V': 'πŸ†…', 'W': 'πŸ††', 'X': 'πŸ†‡', 'Y': 'πŸ†ˆ', 'Z': 'πŸ†‰'
    }
    return ''.join(emoji_dict.get(char, char) for char in text)

# Initialize session state
if 'messages' not in st.session_state:
    st.session_state.messages = []

if 'api_key' not in st.session_state:
    st.session_state.api_key = ""

if 'selected_model' not in st.session_state:
    st.session_state.selected_model = ""

if 'selected_service' not in st.session_state:
    st.session_state.selected_service = ""

if 'base_url' not in st.session_state:
    st.session_state.base_url = ""

# Sidebar
st.sidebar.title("Chat Settings")

 
# Service selection
service = st.sidebar.radio("Select a service:", ("Together AI","OpenAI-like", "Groq"))
st.session_state.selected_service = service

# Model selection based on the chosen service
if service == "OpenAI-like":
    openai_like_models = get_openai_like_models()
    selected_model = st.sidebar.selectbox("Select an OpenAI-like model:", openai_like_models)
    base_url = st.sidebar.text_input("Enter the base URL for the OpenAI-like API:",type="password",value=os.getenv('API_BASE'))
    api_key = st.sidebar.text_input("Enter your API Key:", type="password",value=os.getenv('API_KEY'))
    if api_key:
        st.session_state.api_key = api_key
    if base_url:
        st.session_state.base_url = base_url



elif service == "Groq":
    groq_models = get_groq_models()
    api_key = st.sidebar.text_input("Enter your API Key:", type="password",value=os.getenv('GROQ_API_KEY'))
    if api_key:
        st.session_state.api_key = api_key
    selected_model = st.sidebar.selectbox("Select a Groq model:", groq_models)
    base_url = "https://api.groq.com/openai/v1"
else:  # OpenAI-like
    together_models = get_together_models()
    api_key = st.sidebar.text_input("Enter your API Key:", type="password",value=os.getenv('TOGETHER_API_KEY'))
    if api_key:
        st.session_state.api_key = api_key
    selected_model = st.sidebar.selectbox("Select a Together AI model:", together_models)
    base_url = "https://api.together.xyz/v1"

if selected_model:
    st.session_state.selected_model = selected_model

# Main chat interface
st.title("AI Chat Application")

# Display chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# User input
if prompt := st.chat_input("You:"):
    if not st.session_state.api_key:
        st.error("Please enter an API key.")
    elif not st.session_state.selected_model:
        st.error("Please select a model.")
    elif service == "OpenAI-like" and not st.session_state.base_url:
        st.error("Please enter the base URL for the OpenAI-like API.")
    else:
        # Add user message to chat history
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.markdown(prompt)

        # Generate AI response
        with st.chat_message("assistant"):
            message_placeholder = st.empty()
            full_response = ""
            
            try:
                if service == "OpenAI-like":
                    client = OpenAI(
                        api_key=st.session_state.api_key,
                        base_url=st.session_state.base_url + '/v2',
                    )
                else:
                    client = OpenAI(api_key=st.session_state.api_key, base_url=base_url)
                
                for response in client.chat.completions.create(
                    model=st.session_state.selected_model,
                    messages=[
                        {"role": m["role"], "content": m["content"]}
                        for m in st.session_state.messages
                    ],
                    stream=True,
                    max_tokens=1000,
                    temperature=0.7
                ):
                    full_response += (response.choices[0].delta.content or "")
                    message_placeholder.markdown(full_response + "β–Œ")
                
                message_placeholder.markdown(full_response)
            except Exception as e:
                st.error(f"An error occurred: {str(e)}")
                full_response = "I apologize, but an error occurred while generating the response."
            
            # Add assistant response to chat history
            st.session_state.messages.append({"role": "assistant", "content": full_response})

# Clear chat button
if st.sidebar.button("Clear Chat"):
    st.session_state.messages = []

    st.rerun()

 
with st.sidebar:
    st.title("Text Conversion")
    input_text = st.text_area("Enter text to convert:")

    col1, col2 = st.columns(2)

    with col1:
        if st.button("To Leetspeak"):
            if input_text:
                converted_text = to_leetspeak(input_text)
                st.text_area("Leetspeak Result:", converted_text, height=100)
                st.code(converted_text, language="text")

        if st.button("To Base64"):
            if input_text:
                converted_text = to_base64(input_text)
                st.text_area("Base64 Result:", converted_text, height=100)
                st.code(converted_text, language="text")

    with col2:
        if st.button("To Binary"):
            if input_text:
                converted_text = to_binary(input_text)
                st.text_area("Binary Result:", converted_text, height=100)
                st.code(converted_text, language="text")

        if st.button("To Emoji"):
            if input_text:
                converted_text = to_emoji(input_text)
                st.text_area("Emoji Result:", converted_text, height=100)
                st.code(converted_text, language="text")