import json import gradio as gr import numpy as np import time import csv import json import os import random import string import sys import time import gradio as gr import numpy as np import pandas as pd from huggingface_hub import ( CommitScheduler, HfApi, InferenceClient, login, snapshot_download, hf_hub_download, ) from PIL import Image from utils import string_to_image import matplotlib.backends.backend_agg as agg import math from pathlib import Path import zipfile import gdown np.random.seed(int(time.time())) csv.field_size_limit(sys.maxsize) np.random.seed(int(time.time())) ############################################################################################################### session_token = os.environ.get("SessionToken") login(token=session_token, add_to_git_credential=True) zip_file_path = './dogs.zip' # Download Embeddings gdown.cached_download( url="https://huggingface.co./datasets/XAI/PEEB-Data/resolve/main/data.zip?download=true", path=zip_file_path, quiet=False, hash="md5:153c2a3a8bf77a075f8254e191009772", ) try: with zipfile.ZipFile(zip_file_path, "r") as zip_ref: zip_ref.extractall("./") print("Extraction successful.") # List the contents of the directory to which you've extracted the files print("Extracted files:", os.listdir("./")) except zipfile.BadZipFile: print("Failed to extract: The zip file is corrupt.") except FileNotFoundError: print("Failed to extract: The zip file does not exist.") except Exception as e: print(f"An error occurred: {e}") print("Contents of the directory:", os.listdir("./")) # Show the content of data folder as a tree print("Contents of the data folder:") for root, dirs, files in os.walk("./dogs"): level = root.replace("./data", "").count(os.sep) indent = " " * 4 * (level) print(f"{indent}{os.path.basename(root)}/") subindent = " " * 4 * (level + 1) for f in files: # ignore .jpeg files if not f.endswith(".jpeg"): print(f"{subindent}{f}") NUMBER_OF_IMAGES = 30 intro_screen = Image.open("./images/intro.jpg") # chec kif the metadata is present if not os.path.exists("./dogs/top1/metadata.json"): print("metadata.json is not present") # show the content of dogs and top1 print("Contents of the dogs folder:") for root, dirs, files in os.walk("./dogs"): level = root.replace("./dogs", "").count(os.sep) indent = " " * 4 * (level) print(f"{indent}{os.path.basename(root)}/") subindent = " " * 4 * (level + 1) for f in files: print(f"{subindent}{f}") else: print("metadata.json is present") meta_top1 = json.load(open("./dogs/top1/metadata.json")) meta_topK = json.load(open("./dogs/topk/metadata.json")) all_data = {} all_data["top1"] = meta_top1 all_data["topK"] = meta_topK # for data in all_data["top1"] and all_data["topK"] add a key to show which type they are for k in all_data["top1"].keys(): all_data["top1"][k]["type"] = "top1" for k in all_data["topK"].keys(): all_data["topK"][k]["type"] = "topK" REPO_URL = "taesiri/AdvisingNetworksReviewDataExtension" JSON_DATASET_DIR = Path("responses") ################################################################################################################ scheduler = CommitScheduler( repo_id=REPO_URL, repo_type="dataset", folder_path=JSON_DATASET_DIR, path_in_repo="./data", every=1, private=True, ) if not JSON_DATASET_DIR.exists(): JSON_DATASET_DIR.mkdir() def generate_data(type_of_nns): global NUMBER_OF_IMAGES # randomly pick NUMBER_OF_IMAGES from the dataset with type type_of_nns keys = list(all_data[type_of_nns].keys()) sample_data = random.sample(keys, NUMBER_OF_IMAGES) data = [] for k in sample_data: new_datapoint = all_data[type_of_nns][k] new_datapoint["image-path"] = f"./dogs/{type_of_nns}/{k}.jpeg" data.append(new_datapoint) return data def load_sample(data, current_index): current_datapoint = data[current_index] image_path = current_datapoint["image-path"] image = Image.open(image_path) top_1 = current_datapoint["top1-label"] top_1_score = current_datapoint["top1-score"] q_template = ( "
Sam guessed the Input image is " "{} " "with {}% " "confidence. Is this bird a {}?" "
" ) q_template = ( "
Sam guessed the Input image is " "{} " "with {}% " "confidence.
Is this bird a {}?" "
" ) top_1_score = top_1_score * 100 top_1_score = round(top_1_score, 2) rounded_up_score = math.ceil(top_1_score) rounded_up_score = int(rounded_up_score) question = q_template.format(top_1, str(rounded_up_score), top_1) accept_reject = current_datapoint["Accept/Reject"] return image, top_1, rounded_up_score, question, accept_reject def preprocessing(data, type_of_nns, current_index, history, username): print("preprocessing") data = generate_data(type_of_nns) print("data generated") # append a random text to the username random_text = "".join( random.choice(string.ascii_lowercase + string.digits) for _ in range(8) ) if username == "": username = "username" username = f"{username}-{random_text}" current_index = 0 print("loading sample ....") qimage, top_1, top_1_score, question, accept_reject = load_sample( data, current_index ) return ( qimage, top_1, top_1_score, question, accept_reject, current_index, history, data, username, ) def update_app(decision, data, current_index, history, username): global NUMBER_OF_IMAGES if current_index == -1: gr.Error("Please Enter your username and load samples") fake_plot = string_to_image("Please Enter your username and load samples") canvas = agg.FigureCanvasAgg(fake_plot) canvas.draw() empty_image = Image.frombytes( "RGBA", canvas.get_width_height(), canvas.tostring_argb() ) return ( empty_image, "", "", "", "", current_index, history, data, 0, gr.update(interactive=False), gr.update(interactive=False), "", ) # Done, let's save and upload if current_index == NUMBER_OF_IMAGES - 1: time_stamp = int(time.time()) # Add decision to the history current_dicitonary = data[current_index].copy() current_dicitonary["user_decision"] = decision current_dicitonary["user_id"] = username accept_reject_string = "Accept" if decision == "YES" else "Reject" current_dicitonary["is_user_correct"] = ( current_dicitonary["Accept/Reject"] == accept_reject_string ) history.append(current_dicitonary) # convert to percentage final_decision_data = { "user_id": username, "time": time_stamp, "history": history, } # upload the decision to the server temp_filename = f"./responses/results_{username}.json" # convert decision_dict to json and save it on the disk with open(temp_filename, "w") as f: json.dump(final_decision_data, f) fake_plot = string_to_image("Thank you for your time!") canvas = agg.FigureCanvasAgg(fake_plot) canvas.draw() empty_image = Image.frombytes( "RGBA", canvas.get_width_height(), canvas.tostring_argb() ) # TODO, Call the accuracy and show it to the user # calcualte the mean of is_user_correct all_is_user_correct = [d["is_user_correct"] for d in history] accuracy = np.mean(all_is_user_correct) * 100 accuracy = round(accuracy, 2) return ( empty_image, "", "", "", "", current_index, history, data, current_index + 1, gr.update(interactive=False), gr.update(interactive=False), f"User Accuracy: {accuracy}", ) if current_index >= 0 and current_index < NUMBER_OF_IMAGES - 1: current_dicitonary = data[current_index].copy() current_dicitonary["user_decision"] = decision current_dicitonary["user_id"] = username accept_reject_string = True if decision == "YES" else False current_dicitonary["is_user_correct"] = ( current_dicitonary["Accept/Reject"] == accept_reject_string ) print(f" accept/reject : {current_dicitonary['Accept/Reject'] }") print( f" accept/reject status: {current_dicitonary['Accept/Reject'] == accept_reject_string}" ) history.append(current_dicitonary) current_index += 1 qimage, top_1, top_1_score, question, accept_reject = load_sample( data, current_index ) return ( qimage, top_1, top_1_score, question, accept_reject, current_index, history, data, current_index, gr.update(interactive=True), gr.update(interactive=True), "", ) def disable_component(): return gr.update(interactive=False) def enable_component(): return gr.update(interactive=True) def hide_component(): return gr.update(visible=False) with gr.Blocks(theme=gr.themes.Soft()) as demo: data_state = gr.State({}) current_index = gr.State(-1) history = gr.State([]) gr.Markdown("# Advising Networks") gr.Markdown("## Accept/Reject AI predicted label using Explanations") with gr.Column(): with gr.Row(): username_textbox = gr.Textbox(label="Username", value=f"username") labeled_images_textbox = gr.Textbox(label="Labeled Images", value="0") total_images_textbox = gr.Textbox( label="Total Images", value=NUMBER_OF_IMAGES ) type_of_nns_dropdown = gr.Dropdown( label="Type of NNs", choices=["top1", "topK"], value="top1", ) prepare_btn = gr.Button(value="Start The Experiment") with gr.Column(): with gr.Row(): question_textbox = gr.HTML("") # question_textbox = gr.Markdown("") with gr.Column(elem_id="parent_row"): query_image = gr.Image( type="pil", label="Query", show_label=False, value="./images/intro.jpg" ) with gr.Row(): accept_btn = gr.Button(value="YES", interactive=False) reject_btn = gr.Button(value="NO", interactive=False) with gr.Column(elem_id="parent_row"): top_1_textbox = gr.Textbox(label="Top 1", value="", visible=False) top_1_score_textbox = gr.Textbox( label="Top 1 Score", value="", visible=False ) accept_reject_textbox = gr.Textbox( label="Accept/Reject", value="", visible=False ) with gr.Column(): with gr.Row(): final_results = gr.HTML("") # data, type_of_nns, current_index, history prepare_btn.click( preprocessing, inputs=[ data_state, type_of_nns_dropdown, current_index, history, username_textbox, ], outputs=[ query_image, top_1_textbox, top_1_score_textbox, question_textbox, accept_reject_textbox, current_index, history, data_state, username_textbox, ], ).then(fn=disable_component, outputs=[prepare_btn]).then( fn=disable_component, outputs=[type_of_nns_dropdown] ).then( fn=disable_component, outputs=[username_textbox] ).then( fn=disable_component, outputs=[prepare_btn] ).then( fn=enable_component, outputs=[accept_btn] ).then( fn=enable_component, outputs=[reject_btn] ).then( fn=hide_component, outputs=[prepare_btn] ) accept_btn.click( update_app, inputs=[accept_btn, data_state, current_index, history, username_textbox], outputs=[ query_image, top_1_textbox, top_1_score_textbox, question_textbox, accept_reject_textbox, current_index, history, data_state, labeled_images_textbox, accept_btn, reject_btn, final_results, ], ) reject_btn.click( update_app, inputs=[reject_btn, data_state, current_index, history, username_textbox], outputs=[ query_image, top_1_textbox, top_1_score_textbox, question_textbox, accept_reject_textbox, current_index, history, data_state, labeled_images_textbox, accept_btn, reject_btn, final_results, ], ) demo.launch(debug=False, server_name="0.0.0.0") # demo.launch(debug=False)