Spaces:
Sleeping
Sleeping
File size: 12,056 Bytes
a8ed63e c9d6732 a8ed63e e558360 a8ed63e e45e8a1 a8ed63e 6716c60 a8ed63e 3d77ade a8ed63e 3d77ade a8ed63e 3d77ade a8ed63e 3d77ade a8ed63e 1557c43 a8ed63e 1557c43 a8ed63e a7efc81 a8ed63e c9d6732 a8ed63e 9db02f9 a8ed63e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import json
import gradio as gr
import numpy as np
import time
import csv
import json
import os
import random
import string
import sys
import time
import gradio as gr
import numpy as np
import pandas as pd
from huggingface_hub import (
CommitScheduler,
HfApi,
InferenceClient,
login,
snapshot_download,
hf_hub_download,
)
from PIL import Image
from utils import string_to_image
import matplotlib.backends.backend_agg as agg
import math
from pathlib import Path
import zipfile
import gdown
np.random.seed(int(time.time()))
csv.field_size_limit(sys.maxsize)
np.random.seed(int(time.time()))
###############################################################################################################
session_token = os.environ.get("SessionToken")
login(token=session_token, add_to_git_credential=True)
NUMBER_OF_IMAGES = 30
intro_screen = Image.open("./images/intro.jpg")
meta_top1 = json.load(open("./dogs/top1/metadata.json"))
meta_topk = json.load(open("./dogs/topk/metadata.json"))
all_data = {}
all_data["top1"] = meta_top1
all_data["topk"] = meta_topk
# for data in all_data["top1"] and all_data["topk"] add a key to show which type they are
for k in all_data["top1"].keys():
all_data["top1"][k]["type"] = "top1"
for k in all_data["topk"].keys():
all_data["topk"][k]["type"] = "topk"
REPO_URL = "taesiri/AdvisingNetworksReviewDataExtension"
JSON_DATASET_DIR = Path("responses")
################################################################################################################
scheduler = CommitScheduler(
repo_id=REPO_URL,
repo_type="dataset",
folder_path=JSON_DATASET_DIR,
path_in_repo="./data",
every=1,
private=True,
)
if not JSON_DATASET_DIR.exists():
JSON_DATASET_DIR.mkdir()
def generate_data(type_of_nns):
global NUMBER_OF_IMAGES
# randomly pick NUMBER_OF_IMAGES from the dataset with type type_of_nns
keys = list(all_data[type_of_nns].keys())
sample_data = random.sample(keys, NUMBER_OF_IMAGES)
data = []
for k in sample_data:
new_datapoint = all_data[type_of_nns][k]
new_datapoint["image-path"] = f"./dogs/{type_of_nns}/{k}.jpeg"
data.append(new_datapoint)
return data
def load_sample(data, current_index):
current_datapoint = data[current_index]
image_path = current_datapoint["image-path"]
image = Image.open(image_path)
top_1 = current_datapoint["top1-label"]
top_1_score = current_datapoint["top1-score"]
q_template = (
"<div style='font-size: 24px;'>Sam guessed the Input image is "
"<span style='font-weight: bold;'>{}</span> "
"with <span style='font-weight: bold;'>{}%</span> "
"confidence. Is this dog a <span style='font-weight: bold;'>{}</span>?"
"</div>"
)
q_template = (
"<div style='font-size: 24px;'>Sam guessed the Input image is "
"<span style='font-weight: bold;'>{}</span> "
"with <span style='font-weight: bold;'>{}%</span> "
"confidence.<br>Is this dog a <span style='font-weight: bold;'>{}</span>?"
"</div>"
)
top_1_score = top_1_score * 100
top_1_score = round(top_1_score, 2)
rounded_up_score = math.ceil(top_1_score)
rounded_up_score = int(rounded_up_score)
question = q_template.format(top_1.replace('_',' '), str(rounded_up_score), top_1.replace('_',' '))
accept_reject = current_datapoint["Accept/Reject"]
return image, top_1, rounded_up_score, question, accept_reject
def preprocessing(data, type_of_nns, current_index, history, username):
print("preprocessing")
data = generate_data(type_of_nns)
print("data generated")
# append a random text to the username
random_text = "".join(
random.choice(string.ascii_lowercase + string.digits) for _ in range(8)
)
if username == "":
username = "username"
username = f"{username}-{random_text}"
current_index = 0
print("loading sample ....")
qimage, top_1, top_1_score, question, accept_reject = load_sample(
data, current_index
)
return (
qimage,
top_1,
top_1_score,
question,
accept_reject,
current_index,
history,
data,
username,
)
def update_app(decision, data, current_index, history, username):
global NUMBER_OF_IMAGES
if current_index == -1:
gr.Error("Please Enter your username and load samples")
fake_plot = string_to_image("Please Enter your username and load samples")
canvas = agg.FigureCanvasAgg(fake_plot)
canvas.draw()
empty_image = Image.frombytes(
"RGBA", canvas.get_width_height(), canvas.tostring_argb()
)
return (
empty_image,
"",
"",
"",
"",
current_index,
history,
data,
0,
gr.update(interactive=False),
gr.update(interactive=False),
"",
)
# Done, let's save and upload
if current_index == NUMBER_OF_IMAGES - 1:
time_stamp = int(time.time())
# Add decision to the history
current_dicitonary = data[current_index].copy()
current_dicitonary["user_decision"] = decision
current_dicitonary["user_id"] = username
accept_reject_string = "Accept" if decision == "YES" else "Reject"
current_dicitonary["is_user_correct"] = (
current_dicitonary["Accept/Reject"] == accept_reject_string
)
history.append(current_dicitonary)
# convert to percentage
final_decision_data = {
"user_id": username,
"time": time_stamp,
"history": history,
}
# upload the decision to the server
temp_filename = f"./responses/results_{username}.json"
# convert decision_dict to json and save it on the disk
with open(temp_filename, "w") as f:
json.dump(final_decision_data, f)
fake_plot = string_to_image("Thank you for your time!")
canvas = agg.FigureCanvasAgg(fake_plot)
canvas.draw()
empty_image = Image.frombytes(
"RGBA", canvas.get_width_height(), canvas.tostring_argb()
)
# TODO, Call the accuracy and show it to the user
# calcualte the mean of is_user_correct
all_is_user_correct = [d["is_user_correct"] for d in history]
accuracy = np.mean(all_is_user_correct) * 100
accuracy = round(accuracy, 2)
return (
empty_image,
"",
"",
"",
"",
current_index,
history,
data,
current_index + 1,
gr.update(interactive=False),
gr.update(interactive=False),
f"User Accuracy: {accuracy}",
)
if current_index >= 0 and current_index < NUMBER_OF_IMAGES - 1:
current_dicitonary = data[current_index].copy()
current_dicitonary["user_decision"] = decision
current_dicitonary["user_id"] = username
accept_reject_string = True if decision == "YES" else False
current_dicitonary["is_user_correct"] = (
current_dicitonary["Accept/Reject"] == accept_reject_string
)
print(f" accept/reject : {current_dicitonary['Accept/Reject'] }")
print(
f" accept/reject status: {current_dicitonary['Accept/Reject'] == accept_reject_string}"
)
history.append(current_dicitonary)
current_index += 1
qimage, top_1, top_1_score, question, accept_reject = load_sample(
data, current_index
)
return (
qimage,
top_1,
top_1_score,
question,
accept_reject,
current_index,
history,
data,
current_index,
gr.update(interactive=True),
gr.update(interactive=True),
"",
)
def disable_component():
return gr.update(interactive=False)
def enable_component():
return gr.update(interactive=True)
def hide_component():
return gr.update(visible=False)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
data_state = gr.State({})
current_index = gr.State(-1)
history = gr.State([])
gr.Markdown("# Advising Networks")
gr.Markdown("## Accept/Reject AI predicted label using Explanations")
with gr.Column():
with gr.Row():
username_textbox = gr.Textbox(label="Username", value=f"username")
labeled_images_textbox = gr.Textbox(label="Labeled Images", value="0")
total_images_textbox = gr.Textbox(
label="Total Images", value=NUMBER_OF_IMAGES
)
type_of_nns_dropdown = gr.Dropdown(
label="Type of NNs",
choices=["top1", "topk"],
value="top1",
)
prepare_btn = gr.Button(value="Start The Experiment")
with gr.Column():
with gr.Row():
question_textbox = gr.HTML("")
# question_textbox = gr.Markdown("")
with gr.Column(elem_id="parent_row"):
query_image = gr.Image(
type="pil", label="Query", show_label=False, value="./images/intro.jpg"
)
with gr.Row():
accept_btn = gr.Button(value="YES", interactive=False)
reject_btn = gr.Button(value="NO", interactive=False)
with gr.Column(elem_id="parent_row"):
top_1_textbox = gr.Textbox(label="Top 1", value="", visible=False)
top_1_score_textbox = gr.Textbox(
label="Top 1 Score", value="", visible=False
)
accept_reject_textbox = gr.Textbox(
label="Accept/Reject", value="", visible=False
)
with gr.Column():
with gr.Row():
final_results = gr.HTML("")
# data, type_of_nns, current_index, history
prepare_btn.click(
preprocessing,
inputs=[
data_state,
type_of_nns_dropdown,
current_index,
history,
username_textbox,
],
outputs=[
query_image,
top_1_textbox,
top_1_score_textbox,
question_textbox,
accept_reject_textbox,
current_index,
history,
data_state,
username_textbox,
],
).then(fn=disable_component, outputs=[prepare_btn]).then(
fn=disable_component, outputs=[type_of_nns_dropdown]
).then(
fn=disable_component, outputs=[username_textbox]
).then(
fn=disable_component, outputs=[prepare_btn]
).then(
fn=enable_component, outputs=[accept_btn]
).then(
fn=enable_component, outputs=[reject_btn]
).then(
fn=hide_component, outputs=[prepare_btn]
)
accept_btn.click(
update_app,
inputs=[accept_btn, data_state, current_index, history, username_textbox],
outputs=[
query_image,
top_1_textbox,
top_1_score_textbox,
question_textbox,
accept_reject_textbox,
current_index,
history,
data_state,
labeled_images_textbox,
accept_btn,
reject_btn,
final_results,
],
)
reject_btn.click(
update_app,
inputs=[reject_btn, data_state, current_index, history, username_textbox],
outputs=[
query_image,
top_1_textbox,
top_1_score_textbox,
question_textbox,
accept_reject_textbox,
current_index,
history,
data_state,
labeled_images_textbox,
accept_btn,
reject_btn,
final_results,
],
)
demo.launch(debug=False, server_name="0.0.0.0")
# demo.launch(debug=False)
|