File size: 12,835 Bytes
a8ed63e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9d6732
a8ed63e
 
 
 
 
 
 
e558360
a8ed63e
 
 
 
 
 
 
 
e45e8a1
a8ed63e
e558360
2028cdf
e558360
 
 
9eef9ca
e558360
 
 
ad75351
95b4814
 
 
 
38e18a0
95b4814
38e18a0
 
 
 
95b4814
38e18a0
 
 
2028cdf
a8ed63e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9d6732
a8ed63e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import json
import gradio as gr
import numpy as np
import time
import csv
import json
import os
import random
import string
import sys
import time
import gradio as gr
import numpy as np
import pandas as pd
from huggingface_hub import (
    CommitScheduler,
    HfApi,
    InferenceClient,
    login,
    snapshot_download,
    hf_hub_download,
)
from PIL import Image
from utils import string_to_image
import matplotlib.backends.backend_agg as agg
import math
from pathlib import Path
import zipfile
import gdown

np.random.seed(int(time.time()))
csv.field_size_limit(sys.maxsize)
np.random.seed(int(time.time()))


###############################################################################################################
session_token = os.environ.get("SessionToken")
login(token=session_token, add_to_git_credential=True)

zip_file_path = './dogs.zip'

# Download Embeddings
gdown.cached_download(
    url="https://huggingface.co./datasets/XAI/PEEB-Data/resolve/main/data.zip?download=true",
    path=zip_file_path,
    quiet=False,
    md5="153c2a3a8bf77a075f8254e191009772",
)

try:
    with zipfile.ZipFile(zip_file_path, "r") as zip_ref:
        zip_ref.extractall("./")
        print("Extraction successful.")
        # List the contents of the directory to which you've extracted the files
        print("Extracted files:", os.listdir("./"))
except zipfile.BadZipFile:
    print("Failed to extract: The zip file is corrupt.")
except FileNotFoundError:
    print("Failed to extract: The zip file does not exist.")
except Exception as e:
    print(f"An error occurred: {e}")

print("Contents of the directory:", os.listdir("./"))


NUMBER_OF_IMAGES = 30
intro_screen = Image.open("./images/intro.jpg")

meta_top1 = json.load(open("./dogs/top1/metadata.json"))
meta_topK = json.load(open("./dogs/topK/metadata.json"))

all_data = {}
all_data["top1"] = meta_top1
all_data["topK"] = meta_topK


# for data in  all_data["top1"] and all_data["topK"] add a key to show which type they are
for k in all_data["top1"].keys():
    all_data["top1"][k]["type"] = "top1"

for k in all_data["topK"].keys():
    all_data["topK"][k]["type"] = "topK"


REPO_URL = "taesiri/AdvisingNetworksReviewDataExtension"
JSON_DATASET_DIR = Path("responses")

################################################################################################################

scheduler = CommitScheduler(
    repo_id=REPO_URL,
    repo_type="dataset",
    folder_path=JSON_DATASET_DIR,
    path_in_repo="./data",
    every=1,
    private=True,
)


if not JSON_DATASET_DIR.exists():
    JSON_DATASET_DIR.mkdir()


def generate_data(type_of_nns):
    global NUMBER_OF_IMAGES
    # randomly pick NUMBER_OF_IMAGES from the dataset with type type_of_nns
    keys = list(all_data[type_of_nns].keys())
    sample_data = random.sample(keys, NUMBER_OF_IMAGES)

    data = []
    for k in sample_data:
        new_datapoint = all_data[type_of_nns][k]
        new_datapoint["image-path"] = f"./dogs/{type_of_nns}/{k}.jpeg"
        data.append(new_datapoint)

    return data


def load_sample(data, current_index):
    current_datapoint = data[current_index]

    image_path = current_datapoint["image-path"]
    image = Image.open(image_path)
    top_1 = current_datapoint["top1-label"]
    top_1_score = current_datapoint["top1-score"]

    q_template = (
        "<div style='font-size: 24px;'>Sam guessed the Input image is "
        "<span style='font-weight: bold;'>{}</span> "
        "with <span style='font-weight: bold;'>{}%</span> "
        "confidence. Is this bird a <span style='font-weight: bold;'>{}</span>?"
        "</div>"
    )

    q_template = (
        "<div style='font-size: 24px;'>Sam guessed the Input image is "
        "<span style='font-weight: bold;'>{}</span> "
        "with <span style='font-weight: bold;'>{}%</span> "
        "confidence.<br>Is this bird a <span style='font-weight: bold;'>{}</span>?"
        "</div>"
    )

    top_1_score = top_1_score * 100
    top_1_score = round(top_1_score, 2)

    rounded_up_score = math.ceil(top_1_score)
    rounded_up_score = int(rounded_up_score)
    question = q_template.format(top_1, str(rounded_up_score), top_1)

    accept_reject = current_datapoint["Accept/Reject"]

    return image, top_1, rounded_up_score, question, accept_reject


def preprocessing(data, type_of_nns, current_index, history, username):
    print("preprocessing")
    data = generate_data(type_of_nns)
    print("data generated")

    # append a random text to the username
    random_text = "".join(
        random.choice(string.ascii_lowercase + string.digits) for _ in range(8)
    )

    if username == "":
        username = "username"

    username = f"{username}-{random_text}"

    current_index = 0
    print("loading sample ....")
    qimage, top_1, top_1_score, question, accept_reject = load_sample(
        data, current_index
    )

    return (
        qimage,
        top_1,
        top_1_score,
        question,
        accept_reject,
        current_index,
        history,
        data,
        username,
    )


def update_app(decision, data, current_index, history, username):
    global NUMBER_OF_IMAGES
    if current_index == -1:
        gr.Error("Please Enter your username and load samples")

        fake_plot = string_to_image("Please Enter your username and load samples")
        canvas = agg.FigureCanvasAgg(fake_plot)
        canvas.draw()
        empty_image = Image.frombytes(
            "RGBA", canvas.get_width_height(), canvas.tostring_argb()
        )

        return (
            empty_image,
            "",
            "",
            "",
            "",
            current_index,
            history,
            data,
            0,
            gr.update(interactive=False),
            gr.update(interactive=False),
            "",
        )

    # Done, let's save and upload
    if current_index == NUMBER_OF_IMAGES - 1:
        time_stamp = int(time.time())

        # Add decision to the history
        current_dicitonary = data[current_index].copy()
        current_dicitonary["user_decision"] = decision
        current_dicitonary["user_id"] = username
        accept_reject_string = "Accept" if decision == "YES" else "Reject"
        current_dicitonary["is_user_correct"] = (
            current_dicitonary["Accept/Reject"] == accept_reject_string
        )
        history.append(current_dicitonary)

        # convert to percentage
        final_decision_data = {
            "user_id": username,
            "time": time_stamp,
            "history": history,
        }

        # upload the decision to the server
        temp_filename = f"./responses/results_{username}.json"
        # convert decision_dict to json and save it on the disk
        with open(temp_filename, "w") as f:
            json.dump(final_decision_data, f)

        fake_plot = string_to_image("Thank you for your time!")
        canvas = agg.FigureCanvasAgg(fake_plot)
        canvas.draw()
        empty_image = Image.frombytes(
            "RGBA", canvas.get_width_height(), canvas.tostring_argb()
        )

        # TODO, Call the accuracy and show it to the user
        # calcualte the mean of is_user_correct
        all_is_user_correct = [d["is_user_correct"] for d in history]
        accuracy = np.mean(all_is_user_correct) * 100
        accuracy = round(accuracy, 2)

        return (
            empty_image,
            "",
            "",
            "",
            "",
            current_index,
            history,
            data,
            current_index + 1,
            gr.update(interactive=False),
            gr.update(interactive=False),
            f"User Accuracy: {accuracy}",
        )

    if current_index >= 0 and current_index < NUMBER_OF_IMAGES - 1:
        current_dicitonary = data[current_index].copy()
        current_dicitonary["user_decision"] = decision
        current_dicitonary["user_id"] = username
        accept_reject_string = True if decision == "YES" else False
        current_dicitonary["is_user_correct"] = (
            current_dicitonary["Accept/Reject"] == accept_reject_string
        )

        print(f" accept/reject : {current_dicitonary['Accept/Reject'] }")
        print(
            f" accept/reject status: {current_dicitonary['Accept/Reject'] == accept_reject_string}"
        )

        history.append(current_dicitonary)

        current_index += 1
        qimage, top_1, top_1_score, question, accept_reject = load_sample(
            data, current_index
        )

        return (
            qimage,
            top_1,
            top_1_score,
            question,
            accept_reject,
            current_index,
            history,
            data,
            current_index,
            gr.update(interactive=True),
            gr.update(interactive=True),
            "",
        )


def disable_component():
    return gr.update(interactive=False)


def enable_component():
    return gr.update(interactive=True)


def hide_component():
    return gr.update(visible=False)


with gr.Blocks(theme=gr.themes.Soft()) as demo:
    data_state = gr.State({})
    current_index = gr.State(-1)
    history = gr.State([])

    gr.Markdown("# Advising Networks")
    gr.Markdown("## Accept/Reject AI predicted label using Explanations")

    with gr.Column():
        with gr.Row():
            username_textbox = gr.Textbox(label="Username", value=f"username")
            labeled_images_textbox = gr.Textbox(label="Labeled Images", value="0")
            total_images_textbox = gr.Textbox(
                label="Total Images", value=NUMBER_OF_IMAGES
            )
            type_of_nns_dropdown = gr.Dropdown(
                label="Type of NNs",
                choices=["top1", "topK"],
                value="top1",
            )

        prepare_btn = gr.Button(value="Start The Experiment")

    with gr.Column():
        with gr.Row():
            question_textbox = gr.HTML("")
            # question_textbox = gr.Markdown("")

        with gr.Column(elem_id="parent_row"):
            query_image = gr.Image(
                type="pil", label="Query", show_label=False, value="./images/intro.jpg"
            )

        with gr.Row():
            accept_btn = gr.Button(value="YES", interactive=False)
            reject_btn = gr.Button(value="NO", interactive=False)

        with gr.Column(elem_id="parent_row"):
            top_1_textbox = gr.Textbox(label="Top 1", value="", visible=False)
            top_1_score_textbox = gr.Textbox(
                label="Top 1 Score", value="", visible=False
            )
            accept_reject_textbox = gr.Textbox(
                label="Accept/Reject", value="", visible=False
            )

    with gr.Column():
        with gr.Row():
            final_results = gr.HTML("")

    # data, type_of_nns, current_index, history
    prepare_btn.click(
        preprocessing,
        inputs=[
            data_state,
            type_of_nns_dropdown,
            current_index,
            history,
            username_textbox,
        ],
        outputs=[
            query_image,
            top_1_textbox,
            top_1_score_textbox,
            question_textbox,
            accept_reject_textbox,
            current_index,
            history,
            data_state,
            username_textbox,
        ],
    ).then(fn=disable_component, outputs=[prepare_btn]).then(
        fn=disable_component, outputs=[type_of_nns_dropdown]
    ).then(
        fn=disable_component, outputs=[username_textbox]
    ).then(
        fn=disable_component, outputs=[prepare_btn]
    ).then(
        fn=enable_component, outputs=[accept_btn]
    ).then(
        fn=enable_component, outputs=[reject_btn]
    ).then(
        fn=hide_component, outputs=[prepare_btn]
    )

    accept_btn.click(
        update_app,
        inputs=[accept_btn, data_state, current_index, history, username_textbox],
        outputs=[
            query_image,
            top_1_textbox,
            top_1_score_textbox,
            question_textbox,
            accept_reject_textbox,
            current_index,
            history,
            data_state,
            labeled_images_textbox,
            accept_btn,
            reject_btn,
            final_results,
        ],
    )

    reject_btn.click(
        update_app,
        inputs=[reject_btn, data_state, current_index, history, username_textbox],
        outputs=[
            query_image,
            top_1_textbox,
            top_1_score_textbox,
            question_textbox,
            accept_reject_textbox,
            current_index,
            history,
            data_state,
            labeled_images_textbox,
            accept_btn,
            reject_btn,
            final_results,
        ],
    )


demo.launch(debug=False, server_name="0.0.0.0")
# demo.launch(debug=False)